理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

物理

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/27(水) 05:15:47.87 ID:CAP_USER
富田隆文 理学研究科博士課程学生、高橋義朗 同教授、段下一平 基礎物理学研究所助教らの研究グループは、レーザー光を組み合わせて作る光格子に極低温の原子気体(レーザー冷却、蒸発冷却などを施し、真空容器中の気体を絶対温度でナノケルビンの温度にまで液化・固化させることなく冷却させたもの)を導入し、周囲の環境との相互作用によるエネルギーや粒子の出入り(以下、散逸)が量子相転移(圧力や磁場などを変化させた際に量子力学的なゆらぎにより物質の状態が異なる状態へと変わること)に与える影響を観測することに、世界で初めて成功しました。

 本研究成果は、2017年12月23日午前4時に米国の科学誌「Science Advances」に掲載されました。

〈概要〉

 金属の中では、規則的にイオンが配列した結晶構造の中を電子が動き回っています。
電子に代表されるような量子力学に従う粒子が多数集まり互いに相互作用している系を量子多体系といい、
このような系で起こる物理現象を解明することは物質の性質を理解する上で非常に重要です。
また、量子力学に従う物質で構成された系は、散逸の影響で容易にその状態が変わってしまうため、量子多体系に対して散逸がどのような影響を及ぼすかを明らかにすることは、物質中で起こる物理現象の理解や量子技術を用いたデバイスの開発にとって重要です。

 本研究グループは、「モット絶縁体-超流動相転移」と呼ばれる量子相転移に対して、制御性の高い散逸を人工的に導入し、その影響を調べました。

続きはソースで

京都大学
http://www.kyoto-u.ac.jp/ja/research/research_results/2017/171223_2.html
ダウンロード (2)


引用元: 【京都大学】見られていると絶縁体が安定化する -観測による量子多体状態の制御技術を確立-

【京都大学】見られていると絶縁体が安定化する -観測による量子多体状態の制御技術を確立-の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/04(月) 21:31:20.71 ID:CAP_USER BE:241972511-2BP(1000)
sssp://img.5ch.net/ico/taxi.gif
一辺が5mmのサイコロを円筒の中にざざーっと入れ、一定の力で左右に回し続けると3時間~1日程度でほぼ全てのサイコロがキレイに整列し、隙間なくみっちりと詰まった状態になることが研究で明らかになっています。この技術は、粒子状の物質を整列させる必要のある産業分野や、宇宙の無重力空間での加工技術への応用が期待されています。

Physics - Focus: Dice Become Ordered When Stirred, Not Shaken

https://physics.aps.org/articles/v10/130

細かい粒子を整列させるという行為は、砂と小石を混ぜてセメントを作る建設業や、材料を均一に混ぜ合わせて医薬品を作るといった医薬品分野などさまざまなケースで広く行われています。
重力のある環境では、粒子状の材料を入れた容器に振動を与えたり、外部からコツコツと叩いたりすることで、内部の粒子の重なりに「緩み」を作りだし、内部に残っていた余分な空間をギュッと圧縮することで全体の体積を小さくすることができます。

これと別の方法を模索してきたスペインのナバーラ大学のディエゴ・マザ氏らの研究チームは、筒状の容器に粒子状の物質を入れ、筒を回転させることで物質をぎゅっとまとめることが可能かを調査しました。

実験ではまず、上向きに設置した円筒の中に5ミリ角のサイコロ2万5000個を流し込みました。
その状態で、筒を上からみて時計回りと反時計回りの方向にひねる動きを一定の強さで加え続け、粒子の変化を検証。

続きはソースで

http://news.livedoor.com/article/detail/13982189/
images (1)


引用元: 【物理】小さなサイコロを円筒に大量に入れ、一定の力で左右に回し続けるとサイコロが綺麗に整列することが判明

小さなサイコロを円筒に大量に入れ、一定の力で左右に回し続けるとサイコロが綺麗に整列することが判明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/11/30(木) 03:11:18.64 ID:CAP_USER
廃炉が決まった高速増殖炉「もんじゅ」について、日本原子力研究開発機構(JAEA)が声明を出した。
炉を冷やす「ナトリウム」を抜きとるのが難しいのではないか、という声に応えるものだ。

日本の多くの原子炉では、炉を冷やすために水を使うが、もんじゅではナトリウムを使う。
ナトリウムは空気に触れると引火しやすいため、扱いに注意が必要。
もんじゅを廃炉にする際、うまく抜きとれるかどうか疑問が出ていた。


JAEAでは、くだんの問題に触れた新聞記事の解説というかたちで意見を述べている。

それによると、ナトリウムの抜きとりについては、今後詳細に検討して決定していくが、原子炉容器の底部まで差し込んであるメンテナンス冷却系の入口配管を生かせば技術的に可能、との考えだ。

続きはソースで

jic_news
https://internetcom.jp/203831/monju-waste-furnace
ダウンロード (1)


引用元: 【高速増殖原型炉もんじゅ】〈続報〉もんじゅのナトリウム「(技術的には)抜きとれます」―日本原子力研究開発機構

【高速増殖原型炉もんじゅ】〈続報〉もんじゅのナトリウム「(技術的には)抜きとれます」―日本原子力研究開発機構の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/11/21(火) 13:44:31.73 ID:CAP_USER
宇宙のどこかで、誰かが地球に奇妙な粒子を投げつけている。
11月17日付の科学誌「サイエンス」に発表された新たな観測結果により、犯人探しはさらにややこしくなった。

 2008年、ヨーロッパの宇宙放射観測衛星PAMELAにより、地球の大気中に陽電子が過剰に存在していることが明らかになった。
陽電子は、通常の物質とは逆の性質をもつ反物質の一種だ。
陽電子が通常の電子と衝突すると、ガンマ線などを放出しながら「対消滅」を起こす。このガンマ線を科学者は検出できる。


 地球大気中に陽電子が過剰に存在している原因を突き止める意義は大きい。
もし解明できたなら、近くの宇宙で起きている高エネルギー現象の解明に役立ち、ひいては物理学におけるいくつかの大きな謎の解明につながるかもしれない。

 科学者たちはこれまで、陽電子は近くのパルサー(大質量の恒星が年老いて爆発したあとに残る、高速で自転する天体)から飛んでくるのではないかと考えていた。なかでも有力視されていたのが、地球から1000光年未満のところにある2つのパルサーだ。
しかし、今回の観測を行った研究チームによると、陽電子はこの2つのパルサーから飛んできたものではないようだ。

 彼らによると、例えば暗黒物質どうしの相互作用など、陽電子はパルサーよりもさらに奇怪な現象によって生成した可能性があるという。

「研究を始めた当初はパルサーが発生源だと信じていました」と、論文の著者であるドイツ、マックス・プランク核物理学研究所のルーベン・ロペス・コト氏は言う。
「けれども、この2つのパルサーでは、陽電子過剰を説明できるほどの陽電子を供給できないことがわかったのです」

 彼らの提案は、天文学者や物理学者の間で論争を引き起こした。一部の研究者はパルサーの可能性を捨てていない。
米フェルミ国立加速器研究所のダン・フーパー氏は、研究チームの観測は厳密に行われているが、
データの解釈に問題があると指摘する。

「私はこれまでどおり、地球の大気中にある過剰な陽電子にはパルサーが寄与していて、そのほとんどがパルサーから来ているとさえ言ってよいと思っています」とフーパー氏は言う。

続きはソースで

ナショナルジオグラフィック日本版サイト
http://natgeo.nikkeibp.co.jp/atcl/news/17/112000448/

ダウンロード


引用元: 【天文学/物理学】〈議論白熱〉地球に飛来する反物質の起源に新説

〈議論白熱〉地球に飛来する反物質の起源に新説の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/11/18(土) 22:15:45.00 ID:CAP_USER
理化学研究所(理研)は、重イオン加速器施設「RIビームファクトリー(RIBF)」を用いて、陽子過剰な新同位元素である「ルビジウム-72(72Rb)」と「ジルコニウム-77(77Zr)」を発見し、核図表において72Rbが天橋立のような構造を作っていることを明らかにしたと発表した。

同成果は、理研仁科加速器研究センター実験装置運転・維持管理室の鈴木宏協力 研究員、櫻井RI物理研究室の西村俊二 先任研究員、櫻井博儀 主任研究員らを中心とする国際共同研究グループによるもの。
詳細は米国の科学雑誌「Physical Review Letters」オンライン版に掲載された。

原子核の性質は、陽子数と中性子数の組み合わせで決まり、対相関という機構により、陽子数または中性子数が偶数のときに安定性が増す。これを反映し、原子核を陽子と中性子の数で分類した核図表において、陽子をこれ以上付け加えられない境界である陽子ドリップラインは、陽子数が偶数の核では出っ張り奇数の核では引っ込むような、ギザギザした形をしている。陽子数が37のRb同位体では、38のストロンチウム(Sr)同位体と36のクリプトン(Kr)同位体が作る「岬」に挟まれた「入江」になっている。

続きはソースで

画像:研究の対象核付近の核図表 (出所:理化学研究所Webサイト)
http://news.mynavi.jp/news/2017/11/17/195/images/001.jpg

マイナビニュース
http://news.mynavi.jp/news/2017/11/17/195/
ダウンロード


引用元: 【化学/理研】新たな同位元素「ルビジウム-72」を発見

【理研】新たな同位元素「ルビジウム-72」を発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/11/24(金) 23:36:03.93 ID:CAP_USER
スカイツリー頂上は地上より時間が速く進むか? 実験へ
11月24日 19時17分

東京スカイツリーの展望台にのぼると地上よりも時間が速く進む。これはアインシュタインの相対性理論から導かれる結論ですが、実際に超高精度の時計を東京スカイツリーに設置して、私たちが暮らす日常の空間で時間の進み方がどのくらい違っているのか調べようという実験を、東京大学などのグループが始めることになりました。
この実験を行うのは、東京大学の香取秀俊教授らの研究グループです。
アインシュタインの一般相対性理論では、時間の流れるスピードは重力の強さによって異なるため、地球の中心から離れれば離れるほど重力が弱まっていき、時間の進み方が速くなることが、理論上わかっています。
しかし、こうした違いは私たちが生活する空間では、ごくわずかなため、実際にその違いを計ることは困難でした。

研究チームは今の1秒の定義を決めている「セシウム原子時計」よりもさらに1000倍精度が高い超高精度の「光格子時計」の開発に成功していて、東京スカイツリーの1階と、450メートルの高さにある展望台の2か所に設置し、時間の進み方の違いを調べることにしています。
光格子時計は、2台をそれぞれ1センチ高さが違う台の上においても時間の流れが違うことを検出できるほどの高い精度です。光格子時計を小型化して、研究室の外の日常生活の場で時間の流れを計るのは初めてで、香取教授は今月、東京スカイツリーを運営する東武タワースカイツリーと実験を行う確認書を交わしました。

続きはソースで

▽引用元:NHK NEWS WEB 11月24日 19時17分
http://www3.nhk.or.jp/news/html/20171124/k10011234621000.html

▽関連サイト
東京大学 香取研究所
http://www.amo.t.u-tokyo.ac.jp/index.html
ダウンロード


引用元: 【物理】スカイツリー頂上は地上より時間が速く進むか? 実験へ/東京大

スカイツリー頂上は地上より時間が速く進むか? 実験へ/東京大の続きを読む
スポンサーリンク

このページのトップヘ