理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

資源・材料

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/30(土) 21:45:56.02 ID:CAP_USER9
炭素原子とその結合からできた蜂の巣のような六角形格子構造を持つシート状の物質「グラフェン」は、ダイヤモンド以上に炭素同士の結合が強く、世界で最も引っ張りに強い物質であり、世界で最も熱伝導率が良い物質とされている。
そのグラフェンを応用し、「最強の防御」を得られるであろう素材が新たに開発された。

グラフェンを2層構造にした「ジアメン(diamene)」は、強い力が加わった時、と貫通不能なダイヤモンドプレートに変化するという。
薄い素材で軽量なのにこの防御力。防弾服に最適である。

■グラフェンとは?

まず、グラフェンをご存知ない方のために説明しよう。
蜂の巣状に並ぶ炭素原子で形成された平らな金網を想像してもらえばいい。

この配列にすると、各炭素原子の3つの電子が原子の手にかたく結びつき、1つは自由に動けるまま残ることから、炭素に素晴らしい特性をもらたす。
ルーズな電子という特性から伝導テクノロジーにも利用できるし、そのメカニカル特性を利用すれば狭いナノチューブを作り出すこともできる。
どちらもの場合も、グラフェンが平らな二次元構造であるゆえに可能になることだ。

image credit:グラフェンの分子構造モデル
http://livedoor.blogimg.jp/karapaia_zaeega/imgs/f/e/fedd0918.jpg

■グラフェンを二枚重ねることで、弾丸貫通不能な無敵の防御素材に

アメリカ・ニューヨーク市立大学先端科学研究センターの研究者は、グラフェン・シートを2枚重ねて、強い力で潰された時に三次元のダイヤモンド状構造に変化するようにした。
これは4つめの電子が固定されるとグラフェンがまた別の有名な炭素同素体、すなわちダイヤモンドに変化する性質を利用したものだ。

またシートの伝導性が急激に変化することで、いくつか面白い電気的特性が生じる。
だが、その応用としてまず考えられるのは軽量の保護材としてである。

続きはソースで

http://livedoor.blogimg.jp/karapaia_zaeega/imgs/7/6/76b554ab.jpg
http://karapaia.com/archives/52251509.html
ダウンロード


引用元: 【技術】銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果

銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/28(木) 18:15:51.46 ID:CAP_USER
〈溶融スラグ〉

 家庭ゴミなどの一般廃棄物のうち、いわゆる「燃えるゴミ」を焼却処理するゴミ清掃工場では、ゴミ焼却に伴って焼却灰が発生し、主に最終処分場に埋められている。
焼却灰の減容化のために、焼却灰を高温で溶融させた後に水中で冷却し、「溶融スラグ」とよばれるガラス状固形物として回収する処理が広く行われている。

 現在、全国で年間約80万トンもの溶融スラグが、自治体などのゴミ清掃工場から発生しており、その一部は道路用のアスファルト骨材やコンクリート用骨材などの土木資材としての利用が図られているものの、さらなる有効活用の手段が求められている。

〈幅広く有効活用〉

 産業技術総合研究所は、ゴミ清掃工場から排出される溶融スラグを従来よりも幅広く有効活用するために、三井造船と共同で高付加価値材料を創り出す技術開発に取り組んでいる。

 溶融スラグを、特定の条件で酸性の溶液を用いて化学的に処理すると、溶融スラグ中に含まれるシリカ(SiO2)成分が、処理溶液に溶けない白色の固体として沈降する。
この白色固体を濾(ろ)過などの操作で回収すると、純度93―98%を超えるシリカが簡単に得られることを発見した。

 このシリカの比表面積はおよそ1グラム当たり600平方メートルであり、高比表面積材料として市販されている合成シリカ材料と同等以上の値である。

続きはソースで

(上)原料の溶融スラグ(下)高比表面積シリカ
https://c01.newswitch.jp/cover?url=http%3A%2F%2Fnewswitch.jp%2Fimg%2Fupload%2Fphpf2lf66_5a4375223fc4b.jpg

ニュースイッチ
https://newswitch.jp/p/11499
images


引用元: 【産総研】燃えるゴミの焼却灰から生まれた素材、用途がどんどん広がる!

燃えるゴミの焼却灰から生まれた素材、用途がどんどん広がる!の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/25(月) 12:03:57.31 ID:CAP_USER
山形大の遠藤昌敏准教授(分析化学・環境化学)らの研究チームが、家庭用電子レンジを使い、自動車の排ガス浄化装置からプラチナなどのレアメタル(希少金属)を回収するのに成功した。
実用化できれば廃棄自動車のリサイクルが容易になり、新たな「都市鉱山」としての期待も高まる。

続きはソースで

画像: 回収されたプラチナの粉末
http://www.tokyo-np.co.jp/s/article/images/2017122401001515.jpg

東京新聞
http://www.tokyo-np.co.jp/s/article/2017122401001509.html
images (2)


引用元: 【化学】電子レンジでプラチナ回収 新たな「都市鉱山」に期待

電子レンジでプラチナ回収 新たな「都市鉱山」に期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/22(金) 14:09:00.46 ID:CAP_USER
物質・材料研究機構と横浜国立大学の研究グループは、自己治癒セラミックスが、骨の治癒と同じく炎症・修復・改変期という3つの過程で治癒することを発見しました。さらに骨の治癒の仕組みをヒントに、セラミックスの治癒を促進する物質を結晶の境目に配置することで、航空機エンジンが作動する1000℃において、最速1分で、き裂を完治できる自己治癒セラミックスの開発に成功しました。

自己治癒セラミックスは1995年に横浜国立大学の研究グループにより発見されて以来、航空機エンジンタービン用の軽量耐熱材料として世界的に注目されてきました。しかし治癒の仕組みが未解明であり、また1200~1300℃の限られた温度領域でしかき裂を完治することが出来ないため、治癒機構を解明し、様々な温度域で高速で完治できるセラミックスの開発が望まれていました。

本研究グループは、自己治癒セラミックスにき裂が入ると、き裂から侵入した酸素と、セラミックスに含まれる炭化ケイ素が反応して二酸化ケイ素が合成され(炎症)、セラミックスの母体であるアルミナと二酸化ケイ素が反応してき裂を充填し(修復)、結晶化して強度が回復する(改変)という三段階で治癒が進むことを明らかにしました。

さらに骨の治癒を促進する体液ネットワークをヒントに、セラミックスの治癒を活性化する酸化マンガンを、アルミナの粒界に極微量配置することで(上図参照)、従来材では1000℃で1000時間かかっていたき裂の治癒時間を、最速1分程度で完治させることに成功しました。

本研究成果をもとに、治癒活性相の種類を適切に選定することで、優れた自己治癒機能を自在に付与した、「割れが入っても壊れない」革新的高温用セラミックスの開発を目指します。

続きはソースで

画像:(左) 自己治癒の様子。完治まで最速1分。
(右) ネットワーク状に配置された酸化マンガン(緑)が治癒を促進。
http://www.jst.go.jp/pr/announce/20171221/icons/zu.jpg

横浜国立大学
http://www.jst.go.jp/pr/announce/20171221/index.html
ダウンロード (5)


引用元: 【横浜国立大学】高速でき裂が完治する自己治癒セラミックスを開発~フライト中にヒビを治す航空機エンジン用部材の実現へ

【横浜国立大学】高速でき裂が完治する自己治癒セラミックスを開発~フライト中にヒビを治す航空機エンジン用部材の実現への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/19(火) 23:50:07.50 ID:CAP_USER
軽くて薄く、そして強靱な素材として知られるグラフェン。この2次元の原子シートを用いることで無尽蔵にエネルギーを得られる可能性があることが、米大学の研究で明らかになった。鍵を握るのは、グラフェンの「ゆらぎ」だ。

ミクロの世界は、われわれを「ゆらぎ」の世界へといざなってくれる。液体の中にある微粒子を顕微鏡で見てみると、それらは生物のようにゆらゆらと不規則にうごめいて見えるはずだ。その理由は、熱運動する原子や分子が、溶媒中の微粒子と常にぶつかり合っているからだという。

この無尽蔵の「ゆらぎ」は、もしかすると人類に究極のクリーンエネルギーを提供してくれる鍵となるかもしれない。米アーカンソー大学の物理学者チームが、グラフェンの持つ特徴的な「ゆらぎ」から、エネルギーを取り出すことができるという強力な証拠を発見したのだ。

■2次元グラフェンの存在を可能にする「ゆらぎ」

鉛筆の芯の材料であるグラファイト(黒鉛)から生まれたことで知られるグラフェンは、軽くて薄く、そして強靱なことから「夢の素材」とも称される。これは蜂の巣のような六角形の構造が規則正しく平面上に繰り返された、2次元の原子シートである。ところがグラフェン自体、そもそも物理的に存在不可能な構造であるはずなのだという。

「グラフェンのように原子1個分の厚みをもつ平坦な素材とは、本質的にとても不安定で、超低温でも溶融してしまうはずなのです」と、米アーカンソー大学の物理学者ポール・ティバード教授は『WIRED』日本版の取材に説明する。これは「マーミン=ワグナーの定理」として知られている。「ですから、2004年のグラフェン発見は非常に驚くべきことでした」

ティバードをはじめとする研究チームは、2010年より“規格外の物質”であるグラフェンが存在しうる物理学の抜け穴を探し続けてきた。その結果、グラフェンは完全に平坦ではありえないことがわかってきたという。「2次元の素材は、存在するために波形で構成されていなければならないはずです」と、ティバードは言う。それも静止した状態ではなく、常に動き回るダイナミックなそれだ。つまりグラフェンは、熱運動により常に「ゆらいで」いるのである。

「この動きをブラウン運動といいます。実際にわたしたちの目でグラフェンの表面を見ることができたとすれば、海の表面のようだと形容できることでしょう。それらの波は不規則に上下したり、周期的に動いたりし、ときには表面を横切る“はぐれ波”のようなものもあります」

彼らは、走査トンネル顕微鏡を用いた実験と、シミュレーションを用いた理論的研究を経て、原子1個分のスケールでグラフェンの上下運動を監視できる技術を開発。まるで海面で上下するブイのように動くグラフェンの高さと時間データセットから速度を計算し、速度分布率を作成した。

するとこのデータから、グラフェンは思いもよらないスピードで上下していることがわかった。それらの動きはブラウン運動の「ゆらぎ」に加えて、さらに大きい高さをもつものだった。物理学ではこの現象をレヴィ飛翔と呼んでいるが、この非常に珍しい現象が、グラフェンでは毎秒何百回も起こっていたのだという。

「この謎を解明するのがわれわれのブレークスルーの鍵でした」と、ティバードは説明する。「最先端の分子動力学シミュレーションによって、グラフェンは単に振動しているだけではなく、波形に湾曲したグラフェンが凸面から凹面に反転することがわかったのです」

続きはソースで

https://wired.jp/2017/12/19/energy-from-graphene/
ダウンロード (1)


引用元: 【ナノテク】二次元材料グラフェンから無尽蔵のクリーンエネルギーを取り出せる可能性 

【ナノテク】二次元材料グラフェンから無尽蔵のクリーンエネルギーを取り出せる可能性の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/15(金) 07:25:48.22 ID:CAP_USER9
いったん割れても、常温で数時間押し当てると修復するガラスを、東京大の相田卓三教授らが開発した。14日付の米科学誌サイエンスに発表した。

 ガラスは通常、割れると材料を構成する分子同士の結びつきが切れてしまうため、高温で溶かさないと再利用は難しい。

 相田さんらは、半透明の新素材「ポリエーテルチオ尿素」でガラスを作製。割れても室温で1~6時間、割れ目を押し当てると再びくっつき、強度も回復した。

続きはソースで

(杉本崇)

配信2017年12月15日04時23分
朝日新聞デジタル
http://www.asahi.com/articles/ASKDG3PNVKDGULBJ002.html
ダウンロード (1)


引用元: 【研究】割れてもくっつくガラス開発 「自然修復」に道 東大

割れてもくっつくガラス開発 「自然修復」に道 東大の続きを読む
スポンサーリンク

このページのトップヘ