理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

植物

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/04(木) 18:52:57.31 ID:CAP_USER
<北極圏の凍土帯(ツンドラ)は、温暖化で植物の背が伸び、そしてそれが、さらに温暖化を招いていることが判明した>

■凍土帯120カ所で、30年に及ぶ調査の結果

地球温暖化によって北極圏の植物が高く伸びるようになり、それが温暖化を一層促進する――。そんな「温暖化のスパイラル」が、北極圏で進行しているようだ。

ドイツのゼンケンベルク生物多様性・気候研究センターが主導した調査で、研究論文が学術誌「ネイチャー」に掲載された。

北極圏の気温は上がり、背の高い植物が拡散している
北極圏の凍土帯(ツンドラ)は、世界の土壌炭素の3分の1から半分を含むことから、長年にわたり気候変動の調査が重点的に実施されてきた。今回の研究では、米アラスカ州、カナダ、アイスランド、北欧諸国、ロシアのシベリア地域の北極圏に位置する凍土帯120カ所で、30年に及ぶデータを分析した。

その結果、北極圏の気温はこの30年で、夏に摂氏約1度、冬に1.5度上昇していた。気温の上昇により、個々の植物の高さが伸びただけでなく、背の高い植物種が比較的暖かい地域から寒い地域へ拡散してきたことも確認された。背の高い植物が現在のペースで拡大を続ける場合、21世紀末までに植物群落の高さは最大60%増加する可能性がある、と研究者チームは予測している。

背の高い植物が雪を蓄え、雪が断熱材となって、凍土を溶かす
凍土帯で背の高い植物が増えると、冬により多くの雪が地表に保持される。この雪が断熱材となり、冬に土壌が急速に固く凍りつくのを緩和するはたらきをする。その結果、凍土が溶けて温室効果ガスの炭素を放出するプロセスが速まっている可能性がある、と研究者らは結論づけている。

続きはソースで

■動画
Global study finds taller plant species taking over as the Arctic warms https://youtu.be/Z-5BGllLcts



https://www.newsweekjapan.jp/stories/assets_c/2018/10/takamori1002a-thumb-720xauto.jpg

ニューズウィーク日本版
https://www.newsweekjapan.jp/stories/world/2018/10/post-11050.php
images


引用元: 【環境】北極圏、温暖化で植物が高く伸び、それがさらに温暖化を招く:判明した仕組みとは[10/02]

北極圏、温暖化で植物が高く伸び、それがさらに温暖化を招く:判明した仕組みとはの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/16(日) 22:52:02.73 ID:CAP_USER
■動画
Mutant Plant Glows When Attacked | National Geographic https://youtu.be/4ezRhktDslE



■葉っぱをかじられた植物は、全身に情報を伝え、防御機構を発動する

 植物は、自身の葉などが傷つけられると、その部位からほかの部位に警報を発して防御機構を発動させる。このほど研究者たちが、この防御反応を動画にとらえることに成功した。植物の「知性」という難しい問題の解明につながるかもしれない。この研究の論文は、埼玉大学の豊田正嗣准教授らにより9月14日付けの学術誌「Science」に発表された。

 同じく論文の著者の1人で、米ウィスコンシン大学マディソン校の植物学研究室を率いるサイモン・ギルロイ氏は、「植物は適切なタイミングで適切なことをしていて、非常に知的に見えます。環境から膨大な量の情報を感知し、処理しているのです」と言う。「これだけ高度な計算をするためには脳のような情報処理ユニットが必要だと思うのですが、植物には脳はありません」

 植物が内部でどのように情報を伝達しているかを調べるため、ギルロイ氏の研究チームは、植物の遺伝子を改変してクラゲ由来の緑色蛍光タンパク質を組み込んだ。この蛍光タンパク質は特定の物質と結合させることができるので、植物の内部にある化学物質が刺激に対してどのように反応するかを観察するのに利用できる。

 毛虫に葉をかじられるなどの攻撃を受けた植物は、グルタミン酸というアミノ酸を出す。グルタミン酸は植物全体のカルシウム濃度を上昇させ、これにより防御機構が起動し、植物をさらなる損傷から守る。ある種の植物は、攻撃してくる昆虫を撃退したり、その昆虫を捕食する別の昆虫を引きつけたりする揮発性化合物を放出する。例えばワタは、ガの幼虫にかじられると、幼虫を捕食するスズメバチを引きつける物質を放出する。

続きはソースで

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/16/b/091400230/
images


引用元: 【植物】〈動画あり〉葉に虫食いで植物内部の「警報」伝達、可視化に成功 植物の防御機能解明[09/14]

〈動画あり〉葉に虫食いで植物内部の「警報」伝達、可視化に成功 植物の防御機能解明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/28(火) 21:18:15.89 ID:CAP_USER
【8月28日 AFP】大気中の二酸化炭素(CO2)濃度の上昇が原因でコムギやコメといった主要穀物から有益な栄養素が徐々に失われる恐れがあるとの研究論文が27日、発表された。研究結果は、世界で多くの人々が栄養不足に陥ることへの懸念を高めるものだと、論文は警告している。

 英科学誌ネイチャー・クライメート・チェンジ(Nature Climate Change)に掲載された論文によると、現在の傾向が続けば、世界の主要穀物に含まれる鉄、亜鉛、タンパク質などの濃度がCO2濃度の上昇によって今世紀半ばまでに最大で17%低下することが考えられるという。

 論文の主執筆者で、米ハーバード大学公衆衛生大学院(Harvard University T.H. Chan School of Public Health)の研究者のマシュー・スミス(Matthew Smith)氏は、AFPの取材に「主にアフリカ、東南アジア、インド、中東などの地域で、栄養不足の状態に陥る人が数億人増える恐れがある」と語った。また、現在すでに栄養不足の問題に直面している数十億人については、その状況がさらに悪化するとした。

 全世界で供給されるタンパク質、亜鉛、鉄の約40%は、コムギ、コメ、トウモロコシの世界3大穀物によってもたらされている。一般に、人が食事から摂取するタンパク質の約60%、鉄の約80%、亜鉛の約70%は、植物性食物からのものだ。

続きはソースで

(c)AFP

AFP
http://www.afpbb.com/articles/-/3187470
ダウンロード


引用元: 【環境】大気中CO2濃度の上昇、農作物の栄養不足の急増招く恐れ 研究[08/28]

大気中CO2濃度の上昇、農作物の栄養不足の急増招く恐れ 研究の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/04(火) 13:42:25.45 ID:CAP_USER
 新エネルギー・産業技術総合開発機構(NEDO)と人工光合成化学プロセス技術研究組合(ARPChem)は、東京大学とともに、太陽電池材料として知られるCIGSをベースとした光触媒で、非単結晶光触媒の中で水素生成エネルギー変換効率(光触媒の水素生成能力を表す性能指数)12.5%を達成したと発表した。

 NEDOは、環境に優しいモノづくりを実現するために、太陽光のエネルギーで水から生成した水素と、工場などから排出されるCO2を合成して、プラスチック原料などの基幹化学品(C2~C4オレフィン)製造プロセスを実現するための基盤技術開発に取り組んでいる。太陽光は光触媒を活用することでエネルギー源として有効に活用することが可能であり、そのため、光触媒のエネルギー変換効率の向上が重要な課題になる。

 今回、NEDOとARPChemは、東京大学とともに、太陽電池材料として知られるCu(In,Ga)Se2(略称CIGS)をベースに、太陽光のスペクトル強度がピークとなる可視光領域(波長400n~800nm)の光を吸収する光触媒材料を開発した。

 光触媒は、太陽光エネルギーを化学エネルギーに変換する機能性材料。太陽光の強度のピークは主に可視光領域(400~800nm)にあるため、この波長域の光を吸収する光触媒ができれば、効率よく太陽光のエネルギーを利用できる。しかし、従来の光触媒は、吸収波長が主として紫外光領域(~400nm)に限られるものが多く、可視光から赤外光領域にかけての光を利用できるように、光触媒の吸収波長を長波長化することが課題の一つだった。

 このため、同プロジェクトでは従来よりも長波長の光を吸収する光触媒材料の一つとして、カルコゲナイド系材料(硫化物、セレン化物、テルル化物などの化合物)の開発を進めてきた。中でもCu(In1-x,Ga x)Se2(CIGS)は赤外領域までの太陽光(xの組成比により750~1230nmまで変化)を利用できるという特徴を持ち、既に太陽電池材料としてメートルスケールの製造技術が確立されている。

 このCIGSはp型半導体であり、その表面にn型半導体を成膜しpn接合を構成することで、光照射によりCIGS固体内で生成した電子と正孔を効率的に分離し、再結合を抑制させることで高い量子効率を得られることが知られていた。今回の研究ではこれらの知見を参考にした上で、二つの工夫により、CIGS中で光照射により生じた電子を用いて、水から高効率で水素を生成させることに成功した。

 工夫の一つは、新規組成のCIGSの開発にある。これにより、高負荷条件ではCIGSとn型半導体の間の障壁が原因で電子が注入されにくくなり、結果的に効率が顕著に低下してしまうという課題をクリアした。もう一つは、大電流密度で水分解反応を進行すると、液相側の電気抵抗をはじめとした効率低下要因が顕在化することを生かした点だ。電解液の成分などを最適化することにより、効率的に水素が得られるようになった。

続きはソースで

■CIGSをベースとした水素生成光触媒の外観(約5cm角)
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo01.jpg
■最適組成の電解液中における、開発した水素生成光触媒の電流電位曲線(左)と水素生成エネルギー変換効率(右)
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo02.jpg
■左は開発した水素生成光触媒と酸素生成光触媒を用いた2段型セル(タンデム配置)の模式図、右は2段型セルに疑似太陽光を照射した時の太陽光エネルギー変換効率
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo03.jpg

http://www.itmedia.co.jp/smartjapan/articles/1809/03/news023.html
ダウンロード (5)


引用元: 【光触媒】「人工光合成」実現を後押し、世界最高の水素変換効率12.5%を達成[09/03]

【光触媒】「人工光合成」実現を後押し、世界最高の水素変換効率12.5%を達成の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/28(火) 16:19:35.38 ID:CAP_USER
先端技術の「ゲノム編集」を使って植物の遺伝子を狙い通りに改変する際、外部から遺伝子を入れないで実現する技術開発で成果が相次ぐ。
カネカと農業・食品産業技術総合研究機構は細胞に酵素を撃ち込み、狙った遺伝子の働きを抑える技術を開発した。
理化学研究所は日本たばこ産業(JT)などと細胞実験に成功した。数年かかる品種改良を1年以内にできる可能性がある。

続きはソースで

日本経済新聞
https://www.nikkei.com/article/DGXMZO34560460U8A820C1TJM000/
ダウンロード


引用元: 植物のゲノム編集 遺伝子使わず、品種改良効率化に[08/27]

植物のゲノム編集 遺伝子使わず、品種改良効率化にの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/23(木) 17:14:30.13 ID:CAP_USER
 つくば市の農業・食品産業技術総合研究機構(農研機構)は、桑が分泌する「乳液」から、新たな農薬として利用できる可能性のあるたんぱく質を見つけたと発表した。害虫が食べた餌の消化・吸収を妨げて成長を抑える効果がある。農研機構は「従来の農薬に耐性のある害虫も現れており、これまでとは異なる作用の農薬が求められている」としている。

 桑の葉を食べた昆虫は成長が遅くなることが知られているため、農研機構は葉などの傷口から分泌される乳液に着目。詳しく調べると、「MLX56」と呼ばれるたんぱく質に成長抑制の効果があった。

続きはソースで

https://www.yomiuri.co.jp/photo/20180821/20180821-OYTNI50021-L.jpg

読売新聞
https://www.yomiuri.co.jp/local/ibaraki/news/20180821-OYTNT50071.html
ダウンロード (1)


引用元: 【植物学】桑に農薬効果のたんぱく質…農研機構[08/21]

桑に農薬効果のたんぱく質…農研機構の続きを読む
スポンサーリンク

このページのトップヘ