理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

もつれ

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/24(日) 14:42:41.19 ID:CAP_USER
量子力学の理論によると「量子もつれ」状態にある粒子ペアは、一方の粒子を状態を測定すると、互いがどんなに離れていても、ただちにもう一方の粒子の状態に影響を及ぼす。直感に反するこの特性の根底に「隠れた変数理論」があるのかどうかを調べるため、前例のない規模の実験が実施された。もし、隠れた変数理論が存在すれば、量子暗号は完全に安全とは言えないことになる。

好奇心をそそられる質問がある。物理現象には原因のないものがあるのだろうか、それとも、すべての作用には理由があるのだろうか?

この難問は基礎科学の最も奇妙な分野の1つである量子物理学における核心的な質問だ。科学史上最大級の人物たちを悩ませてきた質問でもある。

この問題はまた、量子コンピューターや量子暗号などの新テクノロジーにとって重要な意味を持つ。もしかすると、原因と結果についての人々の理解を変えかねない、全く新しい科学分野の核心となる問題かもしれない。

今日、この質問に対する1つの答えが得られている。スペインのバルセロナ科学技術研究所(Barcelona Institute of Science and Technology)のモーガン・ミッチェル博士と数十人の共同研究者、および量子理論の最も混乱を呼ぶ予測に関するかつてない実験に参加した、世界中の10万人を超えるボランティアのおかげである。

ミッチェル博士らの結論は、すべての作用に説明が必要なわけではないというものだ。ミッチェル博士と共同研究者たちは、「もし人間の意思が自由だとすれば、原因のない物理現象が存在します」という。実証に基づく科学的手法を使って、自由意思という形而上学的概念を初めて基礎物理学とリンクさせた研究と言える。

まず、背景について少し説明しよう。量子力学の奇妙な特性の1つに、空間的、時間的に同じポイントに生成された複数の量子粒子が同じ存在を共有できることがある。このような関連は「量子もつれ(エンタングルメント)」と呼ばれ、粒子同士が動いてどれだけ離れても相互の関連は損なわれない。

続きはソースで

https://www.technologyreview.jp/s/88840/how-the-nature-of-cause-and-effect-will-determine-the-future-of-quantum-technology/
ダウンロード


引用元: 【量子のもつれ】すべての物理現象に原因はあるのか?量子技術の核心に迫る大実験

【量子のもつれ】すべての物理現象に原因はあるのか?量子技術の核心に迫る大実験の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/05/22(火) 00:18:50.83 ID:CAP_USER
10万人のゲーマー VS アルバート・アインシュタイン

数学というツールを使いながら、宇宙の謎について解明してきた物理学。多かれ少なかれ未解明な分野もあるなかで、かのアインシュタインをも混乱させた現象として知られるのが「量子もつれ」です。
彼は当時、量子もつれのことを「気味の悪い遠隔作用」と表現していました。

この現象がどんなものなのか、身近なモノを使ってたとえてみるとこんな感じなります。

たとえば、ここにリンゴ1個とオレンジ1個があるとします。
これらをまったくのランダムで別々のカバンに入れて、別々の場所にある学校に向かう2人の子どもに持たせたとしましょう。
そのあと学校についたどちらかの子どもが鞄を開けてどちらのフルーツが入っていたか分かれば、即座にもうひとりの子どもが持っているフルーツが何か分かりますよね。

この時もちろん、鞄を開けてオレンジを見た瞬間にもう一方の鞄に入っているフルーツが突如としてリンゴになるわけじゃありません。ところがです。もしオレンジとリンゴが量子的なフルーツで、このオレンジとリンゴが量子的にもつれていたら、鞄を開けるまではどちらの鞄の中にも同時に両方のフルーツが入っている状態になり……鞄のひとつを開けた瞬間、その鞄の中身はリンゴかオレンジのどちらかに。そしてもう一方の鞄にはもう一方のフルーツが必ず入っているのです。もう…謎です。

続きはソースで

関連ソース画像
https://assets.media-platform.com/gizmodo/dist/images/2018/05/18/20180518-einstein-proven-wrong-by-100000-gamers-01-w960.jpg

関連リンク「BIG Bell Test」
https://museum.thebigbelltest.org/#/home

Source: Nature
Ryan F. Mandelbaum - Gizmodo US[原文]
https://gizmodo.com/100-000-video-game-players-helped-scientists-prove-eins-1825935176

GIZMODO
https://www.gizmodo.jp/2018/05/einstein-proven-wrong-by-100000-gamers.html

ダウンロード


引用元: 【物理学】アインシュタインの誤りを、10万人のゲームプレイヤーたちが証明「量子のもつれ」[05/21]

アインシュタインの誤りを、10万人のゲームプレイヤーたちが証明「量子のもつれ」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/30(月) 19:03:32.73 ID:CAP_USER
東京大学(東大)は4月24日、量子力学的に状態が特定された状態(量子純粋状態)が平衡状態として落ち着いているとき、量子もつれの分布が、熱力学によって完全に決定されることを明らかにしたと発表した。
同成果は今後、冷却原子形やイオントラップ系における量子情報量の測定実験の解析に役立つことが期待されるという。

同成果は、東大物性研究所、東大国際高等研究所カブリ数物連携宇宙研究機構の研究グループによるもの。
詳細は、「Nature Communications」オンライン版に掲載された。

量子力学と熱力学との理論的な対応関係は、20世紀初頭から研究されてきた。
特に近年においては、熱源と完全に切り離された量子純粋状態を用いた熱力学の構築は、理論的な興味はもちろんのこと、冷却原子を使った実験との対応からも、重要な課題となっている。

このような、ミクロな世界(量子力学)とマクロな世界(熱力学)の対応の研究に重要になるのが、量子もつれだ。
量子もつれとは、空間的に離れた2つの量子状態が互いに影響し合う現象のこと。

量子純粋状態が平衡状態へと落ち着く過程をコップの水で例えると、水分子同士の衝突により量子もつれが次々と作られ、この量子もつれによって状態は平衡状態へと変化していく、というように表現できる。しかし、平衡状態の中では大量の量子もつれが複雑に絡み合っているため、一体どの程度の量の量子もつれが生じているのかを判断することは出来なかった。

続きはソースで

関連リンク
「Nature Communications」オンライン版
https://www.nature.com/ncomms/

図:量子もつれの空間分布のグラフ。物質をAとBの2つに分けた時に、
AとBの間にどのくらいの量子もつれが生じているかを縦軸に、物質A の長さを横軸にプロットしてある
https://news.mynavi.jp/article/20180425-621463/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180425-621463/
ダウンロード (1)


引用元: 【量子力学】ミクロとマクロが合致 - 量子もつれの分布は熱力学で決まると判明 東京大学[04/25]

ミクロとマクロが合致 - 量子もつれの分布は熱力学で決まると判明 東京大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/14(土) 12:44:23.74 ID:CAP_USER
京都大学(京大)は4月11日、量子ビットの「純粋化量子もつれ(Entanglement of Purification)」と呼ばれる情報量を計算する幾何学的公式を発見したと発表した。

同成果は、京大 基礎物理学研究所の修士課程学生である梅本滉嗣氏と同 高柳匡 教授らの研究グループによるもの。詳細は英国の学術誌「Nature Physics」に掲載された。

ミクロな世界を支配する物理法則は量子論と呼ばれており、また物質のミクロな構造のなかに含まれる情報の基本単位を量子ビットと呼ぶ。そして、重力の理論と量子論を融合して、宇宙の統一理論の構築を目指す分野が超弦理論(超ひも理論)だ。

超弦理論では、D次元の反ドジッター宇宙の重力の物理法則は、D-1次元の物質の物理法則と同じである、つまりゲージ理論と重力理論を統一的に扱うことが可能であるとする「ゲージ・重力対応」という考え方が1997年に発見された結果、現在では、これら2つの物理法則が同じであるという多数の具体的な証拠が示されながらも、このゲージ重力対応の基礎的なメカニズムについては、まだよく分かっていないという。

そうした中、2006年に高柳教授ならびに笠真生 シカゴ大学 准教授(現在)が「笠-高柳公式」とも呼ばれる「ゲージ重力対応における量子もつれエントロピー(Entanglement Entropy)の面積公式」を発見。物質の量子もつれエントロピーの大きさは、反ドジッター宇宙の最小断面積と等しい、つまり、物体Aと物体Bの2つの間に共有される量子ビットの情報量(相関)は、物体に対応する宇宙の最小断面積に等しい、ということを示したことにより、近年では「重力理論における宇宙は、量子ビットの集合体と見なせる」という考え方が生み出され、世界中で研究が進められるようになっている。しかし、この公式で正しく情報量が計算できるのは、AとB以外には物体が存在しない場合に限られるという制限があった。

続きはソースで

https://news.mynavi.jp/article/20180413-616137/

図:反ドジッター宇宙の境界にAとBの空間領域をとると、AとBをつなぐトンネルを反ドジッター宇宙の内部に作ることができる (出所:京都大学Webサイト)
https://news.mynavi.jp/article/20180413-616137/images/001l.jpg
ダウンロード


引用元: 【物理】京大、ミクロな情報量を計算する幾何学的公式を発見「重力理論の宇宙は、量子ビットの集合体と見なせる」

京大、ミクロな情報量を計算する幾何学的公式を発見「重力理論の宇宙は、量子ビットの集合体と見なせる」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/01/10(水) 20:50:08.00 ID:CAP_USER
米Intelのブライアン・クルザニッチCEOは1月8日(現地時間)、米ネバダ州ラスベガスで開催している「CES 2018」の基調講演で、49量子ビットの量子コンピューティングテストチップの設計、製造、出荷に成功したと発表した。
テストチップは「Tangle Lake」(アラスカの湖にちなむ)と名付けられた。

従来のコンピュータが、0と1のどちらかの状態を取る「ビット」を扱って計算するのに対し、量子コンピュータは0と1の両方の状態を同時に取りうる「量子ビット」(キュービット)を用いて計算する。

 従来のコンピュータは一部の計算において、計算したいデータ量が増えるにつれて計算に必要な時間が指数関数的(2のN乗、Nはデータ量)に増えるという問題を抱えているが、量子コンピュータでは「量子もつれ」(エンタングル)という量子特有の現象を量子ビット同士に起こすことで、計算に必要な時間の増え方がより緩やかになる(Nの2乗程度)という特徴を持つ。

 「製薬や金融モデル、天候予測といった現在最高のスーパーコンピュータでも数カ月から数年かかる計算問題を、量子コンピュータは解決してくれるだろう」(クルザニッチCEO)

 このような理論的な証明がある一方で、物理的に量子ビットを作製し動作させることが量子コンピュータの実現にとって課題の1つとなっている。

続きはソースで

画像:49量子ビットの量子コンピューティングテストチップ「Tangle Lake」
http://image.itmedia.co.jp/news/articles/1801/10/ki_1609376_intel01.jpg

画像:左から7、17、49量子ビットのテストチップ
http://image.itmedia.co.jp/news/articles/1801/10/ki_1609376_intel02.jpg

ITmedia NEWS
http://www.itmedia.co.jp/news/articles/1801/10/news099.html
ダウンロード (1)


引用元: 【テクノロジー】Intel、49量子ビットの量子コンピュータ用チップ「Tangle Lake」の開発に成功

Intel、49量子ビットの量子コンピュータ用チップ「Tangle Lake」の開発に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/07/20(木) 12:10:14.21 ID:CAP_USER9
中国の科学者が史上初めて宇宙へのテレポートに成功したそうだ。
実験で行われたのは、光子を地球のはるか上空へ転送するというもの。

物体を物理的に上昇させるのではなく、アインシュタインが「不気味な遠隔作用」と述べた量子もつれの奇妙な効果を利用したものだ。
つまり光子についての情報を宇宙の別のポイントへと転送し、物体の忠実な複製を作り出すのである。

■ 長距離間での量子テレポートは史上初

長距離間でこの効果が実験されたのは史上初ことだ。
量子もつれは距離による制約を受けない。

つまり2つの粒子はとんでもない長距離であっても相互に作用することができる。
したがって、これまで実現不可能だったスピードでネットワークを構築する量子インターネットなど、さまざまな分野での応用が考えられる。

続きはソースで

http://livedoor.blogimg.jp/karapaia_zaeega/imgs/5/5/55a29e17.jpg
http://livedoor.blogimg.jp/karapaia_zaeega/imgs/7/e/7e3620d8.jpg
http://karapaia.com/archives/52242756.html

ダウンロード


引用元: 【科学】光の粒子を宇宙にテレポートさせる実験に成功 量子力学のブレークスルー [無断転載禁止]©2ch.net

光の粒子を宇宙にテレポートさせる実験に成功 量子力学のブレークスルーの続きを読む
スポンサーリンク

このページのトップヘ