理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

エネルギー

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/01(水) 20:22:54.97 ID:CAP_USER
■上皮細胞が複雑な立体構造を作る際に、これまで考えらえていたのとはまったく異なる形状の細胞ができることが判明し、この形状に「スクートイド:scutoid」と名付けた

正方形、長方形、三角形、五角形など、私たちの身の回りには、多種多様な形状が存在するが、このほど、新たな"形状"が発見された。しかも、この新たな"形状"は、すでに私たちの体にも潜んでいるという。

■『スクートイド』と名付けた
米リーハイ大学、スペインのセビリア大学を中心とする欧米の共同研究プロジェクトは、2018年7月27日、科学オンラインジャーナル「ネイチャー・コミュニケーションズ」において「上皮組織の変化に順応し、エネルギー消費を最小化ながらパッキング構造の安定性を最大化する新たな形状を発見し、これを『スクートイド』と名付けた」という研究論文を発表した。

「スクートイド」は、五角柱をベースとし、頂点の1つを斜めに切り落として側面の数を6つに変形させたような形状で、昆虫の胸部や中央部の後部にある小盾板(スクテラム)と似ていることから、共同研究プロジェクトによって名付けられた。

一般に、胚の成長に伴って、組織は複雑な三次元の形状に曲がりながら、器官になっていく。上皮細胞はこのプロセスに欠かせないもので、互いにしっかりと圧迫し合い、組織の湾曲に順応する仕組みとなっているが、その構造や形状については、その多くが、いまだ明らかとなっていない。

続きはソースで

https://www.newsweekjapan.jp/stories/2018/08/01/save/matuoka0801a.png
https://www.newsweekjapan.jp/stories/assets_c/2018/08/Burdick-Scutoid-thumb-720xauto.jpg

https://www.newsweekjapan.jp/stories/world/2018/08/post-10708.php
ダウンロード (7)


引用元: 上皮組織に新しい「三次元形状」が発見され話題に[08/01]

上皮組織に新しい「三次元形状」が発見され話題にの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/05(日) 18:42:49.04 ID:CAP_USER
国際的な研究チームがエジプトのギザの大ピラミッドの物理的特性を解析した結果から、ピラミッドは電磁エネルギーを内部で共鳴させていくつかの部屋に集中させることが可能な構造になっていることが明らかにされました。
ピラミッドということで非常にスケールの大きな発見なのですが、実際にはこの成果はナノ粒子の分野にも新たな発見を見いだすことにつながる可能性があります。

Electromagnetic properties of the Great Pyramid: First multipole resonances and energy concentration: Journal of Applied Physics: Vol 124, No 3
https://aip.scitation.org/doi/10.1063/1.5026556

Study reveals the Great Pyramid of Giza can focus electromagnetic energy
https://phys.org/news/2018-07-reveals-great-pyramid-giza-focus.html

この研究は、ロシア・サンクトペテルブルク情報技術・機械・光学大学(ITMO大学)などの科学者チームによって進められたもの。
古代エジプトのクフ王によって建設が行われ、世界の七不思議の中で唯一現存するギザの大ピラミッドは非常に多くの謎に包まれたままの建造物ですが、研究チームはその構造に新たな隠された効果があることを解き明かしています。

ピラミッドは底辺の長さが一辺230メートル以上もある巨大な建造物で、ビッシリと石灰岩が積み上げられています。そのため、内部の構造はまだ完全には解明されていません。
そこで研究チームは、ピラミッドの物理的特性を計算するにあたり「ピラミッドにはまだ発見されていない未知の部屋は存在しない」と「石灰岩が均等に積み上げられている」という前提に基づいて計算を行っています。

続きはソースで

https://i.gzn.jp/img/2018/08/04/pyramid-giza-focus-electromagnetic-energy/10_m.png
https://i.gzn.jp/img/2018/08/04/pyramid-giza-focus-electromagnetic-energy/03_m.png
https://i.gzn.jp/img/2018/08/04/pyramid-giza-focus-electromagnetic-energy/04_m.png

GIGAZINE
https://gigazine.net/news/20180804-pyramid-giza-focus-electromagnetic-energy/
ダウンロード (1)


引用元: 【実験考古学 】「ギザの大ピラミッド」は内部の部屋に電磁エネルギーを集められる構造になっていることが判明[08/04]

「ギザの大ピラミッド」は内部の部屋に電磁エネルギーを集められる構造になっていることが判明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/26(木) 11:26:21.79 ID:CAP_USER
■がんや肥満の創薬開発への貢献に期待
日本、シンガポール、アメリカの国際共同研究

・細胞の中のエネルギー代謝の中心であるATPをセンシングする、赤・緑・青(RGB)色の蛍光ATPセンサーの開発に成功
・従来の技術では困難であった、同一細胞内の異なる場所のATP動態の同時観察が可能に
・海外にある日本のラボ・早稲田バイオサイエンスシンガポール研究所(WABIOS)を中心とした、日本、シンガポール、アメリカの国際共同研究

早稲田大学理工学術院の新井敏(あらいさとし)研究院講師と東京工業大学 科学技術創成研究院の北口哲也(きたぐちてつや)准教授(論文投稿当時、早稲田大学重点領域研究機構研究院准教授)らの研究チームは、東京大学大学院総合文化研究科、シンガポール国立大学、ハーバード大学と共同で、細胞の中のエネルギー代謝で中心的な役割を果たしているアデノシン三リン酸(ATP)を検出する、赤・緑・青(RGB)色の蛍光ATPセンサーの開発に成功しました。

地球上のあらゆる生物は、栄養素の分解を通して獲得したエネルギーを、ATPの形に変換・保存し、必要に応じて、ATPからエネルギーを取り出すことで、生命体を構成する細胞の中の様々な化学反応を滞りなく進行させたり、必要な場所に必要な物質を輸送するシステムを動かしたりしています。このATPの細胞内の分布を理解するためには、細胞内のATP濃度の変化の情報を蛍光シグナル(蛍光の明るさの強弱)に変換する蛍光ATPセンサーを細胞の中に導入し、蛍光顕微鏡を用いて生きた細胞を観察する蛍光イメージング技術が最も有力な手法の1つです。

本研究チームは、標的とするATPに特異的に結合するタンパク質(ATP合成酵素の一部)と、蛍光を発する色素を含む蛍光タンパク質をペプチドリンカー(>>1��で繋ぎ、その長さやリンカーを構成するアミノ酸の種類を独自の手法で最適化することで、青・緑・赤色の蛍光ATPセンサー(MaLionB, G, R)を開発しました。今回開発した蛍光ATPセンサーを自在に組み合わせることで、従来の技術では原理的に極めて困難であった「同じ細胞内の異なる場所のATPの動態の同時観察」や、「ATP以外の他のシグナルやタンパク質の動態との同時観察」などが可能になりました。

今回の開発した一連の蛍光ATPセンサーは、汎用性の高い研究ツールとして、創薬・医療技術開発にATPに関わるシグナル伝達経路のビジュアルエビデンスという新しい視点を加え、開発研究を加速度的に進めることが期待されます。本研究は、文部科学省科学研究費補助金、及び、日本医療研究開発機構(AMED)革新的先端研究開発支援事業(PRIME)「メカノバイオロジー機構の解明による革新的医療機器及び医療技術の創出」研究開発領域における研究開発課題「人工オルガネラ熱源の作成細胞機能の温熱制御」(研究開発代表者:新井敏)の研究費によって行われました。研究成果は、ドイツ化学会誌『Angewandte Chemie International Edition』オンライン版に2018年6月27日に掲載され、近日中に紙面掲載される予定です。

続きはソースで

https://www.waseda.jp/top/assets/uploads/2018/07/20180724_fig1-610x337.png
https://www.waseda.jp/top/assets/uploads/2018/07/20180724_fig2-610x239.png

早稲田大学
http://www.waseda.jp/top/news/60484
ダウンロード (2)


引用元: 【医学】生命活動の燃料「ATP」を観察する3色の蛍光センサーの開発に成功がんや肥満の創薬開発への貢献に期待 早稲田大学

生命活動の燃料「ATP」を観察する3色の蛍光センサーの開発に成功がんや肥満の創薬開発への貢献に期待 早稲田大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/08(水) 15:45:26.84 ID:CAP_USER
宇宙の謎にまた一歩近づけそうです。

スイスの欧州原子核研究機構(CERN)にある大型ハドロン衝突型加速器(LHC)ではじめて、電子が残っている状態の原子核、「原子」を加速させることに成功しました! この研究で、より幅広い実験が可能になり、ダークマターに関する研究など、さまざまな分野への応用が期待されています。

■LHC(大型ハドロン衝突型加速器)を改造

LHCは、通常地球上では不可能なほどの高エネルギーを素粒子に与えるが可能な実験施設で、宇宙の謎を解き明かすために作られました。ヒッグス粒子とみられる新しい粒子を発見するなど、新聞やテレビのニュースでも取り上げられたことがあることから、少なくともLHCの名前を聞いたことがあるという読者は多いと思います。今年亡くなられた理論物理学者スティーブン・ホーキング氏が、ヒッグス粒子の発見により最終的に「宇宙が崩壊する」と警告したことで、知った方もいるかもしれません。

LHCで加速させる対象として、中性の鉛原子や水素ガスがよく使用されます。しかし、これらの原子は加速器の中に入る前にある金属箔を通過するときに、電子を失ってしまいます。そこで、LHCのエンジニア、Schaumann氏率いるチームは、金属箔の幅を調節することで、従来の方法では失われていた電子が1つ残るようにしました。 そうして、原子の状態を維持したままの鉛原子を、LHCで加速させることに成功しました。

Schaumann氏はプレスリリースで、「私たちはCERNの研究プログラムとインフラストラクチャを拡大するための新しいアイデアを探しています。まず、何が可能なのか研究することが、最初の一歩です。」と述べています。

続きはソースで 

https://assets.media-platform.com/gizmodo/dist/images/2018/08/06/20180806_lhc_atom-w960.jpg
https://www.gizmodo.jp/2018/08/cern-accelerated-atoms-in-the-lhc.html
ダウンロード (3)


引用元: 【物理学】CERNの大型ハドロン衝突型加速器がはじめて、「原子」を加速させることに成功![08/08]

CERNの大型ハドロン衝突型加速器がはじめて、「原子」を加速させることに成功!の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/08(水) 19:02:35.05 ID:CAP_USER
2018年8月8日 18時52分
二酸化炭素を排出しないクリーンなエネルギーとして日本でも活用が期待される水素を、アンモニアから高純度で取り出す技術がオーストラリアで開発され、8日、公開されました。
水素は超低温で液体にして運ばれますが、窒素と結合させてアンモニアにするとほぼ常温で運ぶことができます。

CSIRO=オーストラリア連邦科学産業研究機構は、水素だけを通す金属製の膜を使って、これまで難しかったアンモニアから高純度の水素を取り出す技術を開発しました。

8日、東部ブリスベンに日本や韓国の自動車メーカーの関係者も招かれて、この技術が公開されました。

取り出された水素は、水素を燃料に走るトヨタ自動車などの燃料電池車にその場で注入され、車の走行に使用できることが確かめられました。

日本は2020年までに燃料電池車およそ4万台を普及させる目標を掲げていて、この技術が、課題となっている水素の確保に役立つことが期待されています。

トヨタの現地法人の担当者、マシュー・マックロイドさんは「すばらしい技術です。水素が確保しやすくなれば燃料電池車を市場に出しやすくなります」と話していました。

水素はオーストラリアに豊富にある天然ガスや石炭からも取り出されるため、CSIROの技術開発チームのリーダー、マイケル・ドーランさんは
「水素はオーストラリア経済に新しい機会をもたらすでしょう。オーストラリアが日本の最大の水素供給国になるよう期待しています」と話していました。

続きはソースで

https://www3.nhk.or.jp/news/html/20180808/k10011569651000.html
ダウンロード


引用元: 【エネルギー】 純度99.99%の水素 抽出技術を新開発 オーストラリア[08/08]

純度99.99%の水素 抽出技術を新開発 オーストラリアの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/27(金) 14:34:54.25 ID:CAP_USER
年を取るとともにどうしても体は衰えてしまうもので、特に顔や体にしわが増え、髪の毛を中心に体毛が少しずつ減っていくなど、老化現象は目に見えて表れます。「いかにして老化を抑えるか」は古来より人類が抱えたテーマでもありますが、遺伝子を編集することでこうした老化現象を解消できるかもしれないという研究結果が報告されています。

Gene Editing Can Reverse Aging Signs in Mice. Maybe Humans Next? | Digital Trends
https://www.digitaltrends.com/cool-tech/reversing-wrinkling-balding-mice/

Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function | Cell Death & Disease
https://www.nature.com/articles/s41419-018-0765-9

アラバマ大学バーミンガム校の研究チームは、遺伝子編集を利用して老化を人為的に打ち消すことができないかという研究を進めました。
その中で研究チームが注目したのが、ミトコンドリアの機能性と老化プロセスの関係です。

ミトコンドリアは細胞内小器官の1つで、細胞内のエネルギーを産生する役割を担っています。
好気性バクテリアの1種が真核細胞内に共生したのがはじまりといわれているミトコンドリアは、細胞とは別に独自のミトコンドリアDNA(mtDNA)を含んでいます。

加齢による老化現象の一因として、mtDNAの変異が以前から指摘されていました。
単一の環状構造を持つmtDNAは二重らせん構造の核DNAよりも損傷しやすく、少しずつ損傷したmtDNAが増えていくことで、細胞・器官の機能低下を引き起こして老化につながるのではないかという説です。
しかし、mtDNAの損傷が具体的にどうやって老化現象を引き起こすのかははっきりとわかっていませんでした。

研究チームは、POLG1という遺伝子の一部を変異させて、さまざまな組織でmtDNAの枯渇が誘導されるマウスを作製しました。

続きはソースで

https://i.gzn.jp/img/2018/07/27/reversing-wrinkling-balding-mice/a02_m.jpg
https://i.gzn.jp/img/2018/07/27/reversing-wrinkling-balding-mice/a03_m.jpg
https://i.gzn.jp/img/2018/07/27/reversing-wrinkling-balding-mice/a01.jpg

GIGAZINE
https://gigazine.net/news/20180727-reversing-wrinkling-balding-mice/
ダウンロード (2)


引用元: 【ゲノム編集】遺伝子編集によってしわや抜け毛を解消し老化を止めることができるかもしれない[07/27]

遺伝子編集によってしわや抜け毛を解消し老化を止めることができるかもしれないの続きを読む
スポンサーリンク

このページのトップヘ