理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

クォーク

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/12/11(火) 14:32:35.40 ID:CAP_USER
■-RHIC衝突型加速器で強い証拠を発見-

理化学研究所(理研)仁科加速器科学研究センター理研BNL研究センター実験研究グループの秋葉康之グループリーダーが実験代表者を務めるPHENIX実験[1]国際共同研究グループは、米国ブルックヘブン国立研究所(BNL)の「RHIC衝突型加速器[2]」を用いて、陽子、重陽子、ヘリウム3(3He)の各原子核と金原子核(197Au)をそれぞれ衝突させた結果、「クォーク・グルーオン・プラズマ」と呼ばれる超高温・超高密度物質の“小さなしずく”が生成されたことを示す強い証拠を得ました。

本研究成果は、自然界に働く四つの基本的な力の一つである「強い相互作用[3]」や宇宙初期の状態の理解につながると期待できます。

金原子核のように大きな原子核同士を非常に高いエネルギーで衝突させると、原子核中の陽子や中性子が融合し、クォーク[4]とグルーオン[5]からなるクォーク・グルーオン・プラズマが生成されます。

今回、PHENIX実験国際共同研究グループは、衝突エネルギー200GeV(ギガ電子ボルト、ギガは10億)で、陽子と金原子核、重陽子と金原子核、ヘリウム3と金原子核をそれぞれ衝突させる実験を行いました。その結果、全ての実験で「楕円フロー[6]」、「三角フロー[6]」と呼ばれるハドロン[7]の集団運動パターンが得られたことから、小さな原子核と大きな原子核の衝突においてもクォーク・グルーオン・プラズマが生成されることが強く示されました。

本研究は、英国の科学雑誌『Nature Physics』のオンライン版(12月10日付け:日本時間12月11日)に掲載されます。

(中略)

■研究手法と成果

原子核衝突実験で生成されたクォーク・グルーオン・プラズマは、一瞬のうちに消滅して多くのクォークとグルーオンからなる複合粒子(ハドロン)に分解してしまうため、直接観測することはできません。しかし、このハドロンの生成パターンを解析することにより、その源であるクォーク・グルーオン・プラズマの性質を調べることができます。特に重要なのは、「楕円フロー」および「三角フロー」と呼ばれる、ハドロンの集団運動パターンです。このパターンは、クォーク・グルーオン・プラズマの粘性が非常に低いために生み出されます(図2)。

PHENIX実験国際共同研究グループはRHIC衝突型加速器を用いて、2014年にヘリウム3原子核(3He:陽子数2、中性子数1)と金原子核(陽子数79、中性子数118)を衝突させる実験を、2015年に陽子と金原子核を衝突させる実験を、2016年には重陽子(陽子数2)と金原子核を衝突させる実験を、それぞれ衝突エネルギー200GeV(ギガ電子ボルト、ギガは10億)で行いました。

その結果、三つのどの衝突実験においても、ハドロン集団運動パターンの楕円フローと三角フローが観測されたことが分かりました(図3)。しかも、これらの楕円フローと三角フローの強度は、それぞれの衝突でクォーク・グルーオン・プラズマが生成されると仮定した場合の理論計算の値と極めて近いことが分かりました。これらの結果は、三つの衝突実験において確かにクォーク・グルーオン・プラズマが生成されたことを示す極めて強力な証拠です。

続きはソースで

理化学研究所
http://www.riken.jp/pr/press/2018/20181211_1/
ダウンロード (2)


引用元: 【物理学】宇宙初期物質の小さなしずく「クォーク・グルーオン・プラズマ」を創成 理研[12/11]

宇宙初期物質の小さなしずく「クォーク・グルーオン・プラズマ」を創成 理研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/06/21(木) 23:07:51.47 ID:CAP_USER
高エネルギー加速器研究機構(KEK)と東京大学(東大)、ATLAS日本グループは、欧州合同原子核研究機関(CERN)が大型ハドロン衝突型加速器(LHC)で行った実験成果として、極めて稀な素粒子の反応であるトップクォーク対とヒッグス粒子が同時に生成される事象を初観測したことを発表した。

LHCは、ほぼ光速まで加速した陽子同士を衝突させる、世界最高エネルギーの円形加速器。
2009年に運転を開始し、2010年3月から7TeV(テラ電子ボルト)の衝突エネルギーで本格的な実験をスタートした。
2012年4月には、衝突エネルギーを8TeVに増強し、同年7月4日のヒッグス粒子発見につながった。
現在は衝突エネルギー13TeV でデータを蓄積し、素粒子とヒッグス粒子との相互作用を精密測定することによる質量起源の解明や、新物理現象を示唆する新粒子の探索を行っている。

この研究において、2017年までに収集したデータ中にヒッグス粒子が、トップクォーク対と同時に生成されるという極めて稀にしか起きない反応を発見した。
ヒッグス粒子は陽子同士の衝突により生成された直後に様々な粒子対に崩壊するが、それらを分類・解析し、まとめたところ、6.3σの統計的精度で間違いがないことがわかった。
現在の測定精度では、反応が起こる確率はヒッグス機構の予想と一致しており、トップクォークの質量がヒッグス 場の動的な性質によって生成されていること(=ヒッグス機構)を示唆している。

続きはソースで

https://news.mynavi.jp/article/20180608-643755/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180608-643755/
images


引用元: 【物理学】最も重い素粒子トップクォークの質量起源もヒッグス機構と判明- KEKなど[06/08]

最も重い素粒子トップクォークの質量起源もヒッグス機構と判明- KEKなどの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/06/06(水) 09:18:22.43 ID:CAP_USER
CERN(欧州原子核研究機構)の大型加速器「大型ハドロン衝突型加速器(LHC)」を使った実験で、最も重い2つの粒子であるトップクォークとヒッグス粒子が一つの陽子衝突から同時に誕生したことを示す発見がありました。これは世界で初めて観測されたもので、この宇宙に「質量」というものが存在する起源を理解する上で重要な発見となります。

UZH - Direct Coupling of the Higgs Boson to the Top Quark Observed
http://www.media.uzh.ch/en/Press-Releases/2018/CMS-Experiment.html

ヒッグス粒子は「神の粒子」とも呼ばれる素粒子で、物質に質量をもたらすことで引力を生み出し、この宇宙が存在できる究極の根源になっているとも考えられています。
その概念は1964年にピーター・ヒッグス教授によって予言されていたのですが、実際に2012年にヒッグス粒子とみられる新粒子が発見されており、ヒッグス氏は2013年のノーベル物理学賞を受賞しています。

しかし、ヒッグス粒子は目に見えず、センサーで検知することもできません。
非常に概念を理解することが難しいものですが、「雪」を使って表現すると、その仕組みや重要性が少し理解しやすくなります。

現地時間の2018年6月4日、LHCに設置された粒子検出器「CMS(小型ミューオンソレノイド)」と「ATLAS(トロイド型LHC観測装置)」と使った実験の中で、ヒッグス粒子とトップクォークが直接相互作用していることを世界で初めて確認したことが発表されました。

続きはソースで

https://i.gzn.jp/img/2018/06/05/higgs-boson-top-quark-direct-coupling-observed/00_m.jpg

関連動画
New results proving that the top quark acquires its mass from the Higgs ...
https://youtu.be/JFJpPpVI7u4



GIGAZINE
https://gigazine.net/news/20180605-higgs-boson-top-quark-direct-coupling-observed/
images


引用元: 【物理学】ヒッグス粒子とトップクォークの同時観測に世界で初めて成功、「質量」の起源の解明に一歩[06/05]

ヒッグス粒子とトップクォークの同時観測に世界で初めて成功、「質量」の起源の解明に一歩の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/25(金) 20:49:39.28 ID:CAP_USER
米トーマス・ジェファーソン国立加速器施設(ジェファーソンラボ)の研究チームは、陽子内部の圧力分布を測定することに成功したと発表した。複合粒子である陽子はクォーク3個で構成されているが、陽子の中心部ではクォークに1035Pa(パスカル)という超高圧力がかかっているという。
研究論文は科学誌「Nature」に掲載された。

研究チームによると、陽子の中心部では外側に向かって1035Paの超高圧力が働いており、超高密度天体である中性子星の中心部よりも高い圧力になっている。
その一方で、陽子の周縁部にはもっと弱い圧力が内側に向かって働いているという。
陽子内部におけるこのような圧力分布は、3個のクォークを結合している強い力によって決まると考えられている。

今回の圧力測定には、「一般化パートン分布(GPD:generalized parton distributions)」および「陽子の重力子形状因子」という素粒子物理の理論枠組みと既存の観測データが利用されている。

GPDは、1969年にリチャード・ファインマンが陽子などのハドロン粒子の衝突を解析するために考案したパートン模型におけるパートン(今日クォークやグルーオンと呼ばれている素粒子と同じもの)の分布関数をより精緻にしたものである。

陽子の重力子形状因子は、仮に重力をプローブとして用いた場合の陽子の力学的構造を表現するために使われる。
重力子形状因子の概念は1966年に物理学者Heinz Pagelsが発表したものであるが、近年の理論的研究から重力形状因子をGPDと関連付けることによって、重力プローブの替わりに電磁気力を利用できるようになった。

続きはソースで

画像:電磁気力と重力に関する素粒子物理の理論を組み合わせることによって、電磁気力をプローブにして陽子内部の力学的性質を調べられるようにした
https://news.mynavi.jp/article/20180525-636182/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180525-636182/
ダウンロード (5)


引用元: 【物理学】陽子内部の圧力を測定、中心部は中性子星よりも高圧 - ジェファーソンラボ[05/25]

陽子内部の圧力を測定、中心部は中性子星よりも高圧 - ジェファーソンラボの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/24(木) 17:50:04.41 ID:CAP_USER
理化学研究所(理研)仁科加速器科学研究センター量子ハドロン物理学研究室の権業慎也基礎科学特別研究員、土井琢身専任研究員、数理創造プログラムの初田哲男プログラムディレクター、京都大学基礎物理学研究所の佐々木健志特任助教、青木慎也教授、大阪大学核物理研究センターの石井理修准教授らの共同研究グループ※「HAL QCD Collaboration[1]」は、スーパーコンピュータ「京」[2]を用いることで、新粒子「ダイオメガ(ΩΩ)」の存在を理論的に予言しました。

本研究成果は、素粒子のクォーク[3]がどのように組み合わさって物質ができているのかという、現代物理学の根源的問題の解明につながると期待できます。

クォークには、アップ、ダウン、ストレンジ、チャーム、ボトム、トップの6種類があることが、小林誠博士と益川敏英博士(2008年ノーベル物理学賞受賞)により明らかにされました。
陽子や中性子はアップクォークとダウンクォークが3個組み合わさって構成されており、3個のストレンジクォークからなるオメガ(Ω)粒子も実験で観測されています。
3個のクォークからなる粒子(バリオン[4])は、これまで多数見つかっていますが、6個のクォークからなる粒子(ダイバリオン[5])は、1930年代に発見された重陽子(陽子1個と中性子1個)以外には見つかっていません。
今回、共同研究グループは、2個のΩ粒子の間に働く力を「京」を用いて明らかにし、ダイオメガ(ΩΩ)の存在を予言しました。
これは、6個のストレンジクォークだけからなる最も奇妙なダイバリオンであり、重陽子の発見以来、約1世紀ぶりとなる実験的発見が期待できます。

本研究は、米国の科学雑誌『Physical Review Letters』に掲載されるのに先立ち、オンライン版(5月23日付け:日本時間5月24日)に掲載される予定です。

■背景
-南部博士のバトンをつなぐ、クォーク・バリオンの研究-
私たちの身の回りの物質は全て、「クォーク」と「レプトン[6]」(電子やニュートリノなど)と呼ばれる素粒子からできています。
陽子や中性子、そしてオメガ(Ω)粒子など3個のクォークから構成される粒子は「バリオン」と総称されています。
また、バリオンが複数集まったものが原子核です。
特に、二つのバリオン(クォーク6個)からなる最も簡単な原子核は「ダイバリオン」と呼ばれます。
ダイバリオンは実験的には、重陽子(陽子1個と中性子1個の結合状態)が1930年代に発見されたのみであり、それ以外のダイバリオンは現在に至るまで観測されていません(図1)。

クォークの運動を決める基礎理論は、南部陽一郎博士(2008年ノーベル物理学賞受賞)によって提唱された「量子色力学[7]」です。
しかし、量子色力学の基本方程式を紙と鉛筆だけで解くことは、理論物理学の最先端手法をもってしても困難です。ケネス・ウィルソン博士(1982年ノーベル物理学賞受賞)は、この困難を解決する「格子ゲージ理論[8]」を提唱しました。

続きはソースで

図:スーパーコンピュータ「京」(左)とダイオメガ(ΩΩ)のイメージ図(右)
http://www.riken.jp/~/media/riken/pr/press/2018/20180524_1/fig.jpg

理化学研究所
http://www.riken.jp/pr/press/2018/20180524_1/
ダウンロード (15)


引用元: 【物理学】新粒子「ダイオメガ」-スパコン「京」と数理で予言するクォーク6個の新世界- 理化学研究所[05/24]

新粒子「ダイオメガ」-スパコン「京」と数理で予言するクォーク6個の新世界- 理化学研究所の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/04/22(日) 03:25:24.70 ID:CAP_USER
 理化学研究所、奈良女子大学、鳥取大学などからなる国際共同研究グループは、「パイ中間子原子」という奇妙な原子を、従来の数十倍の時間効率で大量生成することに成功した。

 原子の中には電子と原子核が存在し、原子核は陽子と中性子によって構成される。
陽子や中性子を分割すると、素粒子であるクォークとなる。電子は他の粒子に比べ無視できるほど軽いため、原子の質量はクォーク質量の和となるように思える。
ところが、実際はその100倍も重いという。これを2008年にノーベル物理学賞を受賞した南部陽一郎博士は、クォークに「クォーク凝縮」がまとわりついているためだと考えた。

 クォーク凝縮とは、クォークと反クォークが対となり真空中に凝縮している状態のこと。
宇宙創成直後の高温・高密度状態では存在しなかったものの、その後宇宙が広がり冷えていく過程で発生したとされる。

続きはソースで

論文情報:【Physical Review Letters】
Spectroscopy of pionic atoms in 122Sn(d,3He) reaction and angular dependence of the formation cross sections
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.152505

大学ジャーナル
http://univ-journal.jp/20379/?show_more=1
ダウンロード (2)


引用元: 【物理学】奇妙な原子「パイ中間子原子」の大量生成で真空とクォーク凝縮の謎に迫る[04/21]

奇妙な原子「パイ中間子原子」の大量生成で真空とクォーク凝縮の謎に迫るの続きを読む
スポンサーリンク

このページのトップヘ