理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

グラフェン

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/27(木) 07:13:11.91 ID:CAP_USER
“夢の物質” 炭素素材の製造技術の開発に成功 名古屋大学
https://www3.nhk.or.jp/news/html/20190627/k10011970331000.html
2019年6月27日
NHK NEWS WEB

※動画あり

 次世代の半導体の材料などとして期待され、
 合成するのが難しいことから夢の物質とも呼ばれる炭素素材の「グラフェンナノリボン」を自在に製造する技術を開発したと名古屋大学のグループが発表し、
 コンピューターの小型化などに応用できる可能性があるとして注目を集めています。

 「グラフェンナノリボン」という物質は、六角形の環状の炭素分子がつながった「ナノメートル」サイズの炭素素材で、
 大きさなどによって電気の通しやすさなどの性質が変化するため、次世代の半導体などへの応用が期待されていますが、
 効率よく合成する方法はなく、夢の物質とも呼ばれています。

続きはソースで

images

引用元: 【化学】“夢の物質” 炭素素材の製造技術の開発に成功 名古屋大学[06/27]

“夢の物質” 炭素素材の製造技術の開発に成功 名古屋大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/07/12(木) 13:05:21.00 ID:CAP_USER
■物質・材料研究機構らは、新しい電子材料として期待されるカーボンナノシートの簡易合成手法を開発。
高価な白金を用いない燃料電池の触媒膜への応用などが期待できるという。

物質・材料研究機構(NIMS)は2018年7月、名古屋大学、東京大学と共同で、新しい電子材料として期待されるカーボンナノシートを、簡易に合成する手法を開発したと発表した。
高い導電性を生かした太陽電池やタッチパネル、高価な白金を用いない燃料電池の触媒膜への応用などが期待されるとしている。

 グラフェンに代表される、二次元状の炭素材料であるカーボンナノシートは、高い導電性や触媒機能も持つため、新しい電子材料や触媒膜として注目を集めている。高品質なカーボンナノシートを合成するためには炭素を多く含む分子を、ナノスケールで構造を制御しながら組み上げることが必要になる。しかし、そのためには高度な手法や高価な装置が必要であり、しかも最終段階において高温で焼成し炭素化する際にナノ構造が崩れてしまうという問題があった。

 研究グループが開発した手法は、ビーカーの水を撹拌(かくはん)して渦流を生じさせ、水面に輪状の炭素分子であるカーボンナノリングを展開し、しばらく静置させることで生じる自己組織化した薄膜を基板に写し取る。
これにより厚さ10nm(ナノメートル)未満かつ、100μm2にわたって均一な分子薄膜を得ることに成功した。

続きはソースで

■カーボンナノリングを用いたカーボンナノシートの合成
http://image.itmedia.co.jp/smartjapan/articles/1807/11/rk_180710_carbon01.jpg

http://www.itmedia.co.jp/smartjapan/articles/1807/11/news040.html
ダウンロード


引用元: 【エネルギー】カーボンナノシートを簡易に合成、低コスト燃料電池への応用も期待[07/11]

カーボンナノシートを簡易に合成、低コスト燃料電池への応用も期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/06/22(金) 14:23:40.05 ID:CAP_USER
2枚のグラフェンシートを、「魔法角」と呼ばれる特定の角度だけ回転させて積層すると、抵抗なく電子が移動するようになることが明らかになった。
Nature ダイジェスト Vol. 15 No. 6 | doi : 10.1038/ndigest.2018.180607

大抵の超伝導体は、絶対零度に近い温度でのみ超伝導を発現する。近年次々と報告されている「高温」超伝導体でも、抵抗なく電気を通すようになる温度(転移温度)は、大気圧の場合は最高でも約133K(-140℃)だ。そのため、室温で超伝導を示す材料が発見されれば、コストのかかる冷却が不要になり、エネルギー伝送や医療用スキャナー、輸送などの分野に革命をもたらす可能性がある。

続きはソースで

原文:Nature (2018-03-08) | doi: 10.1038/d41586-018-02773-w |
Surprise graphene discovery could unlock secrets of superconductivity
http://www.nature.com/doifinder/10.1038/d41586-018-02773-w

https://t.co/qhYIyPOZ6B
images


引用元: 【超伝導】グラフェン素材をずらして重ねると超伝導体に![06/15]

【超伝導】グラフェン素材をずらして重ねると超伝導体に!の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/19(月) 14:03:48.39 ID:CAP_USER
マサチューセッツ工科大学(MIT)とハーバード大学の研究チームは、グラフェンの電気特性を絶縁体と超伝導体の間で切り替えることに成功したと発表した。
同じ1つのグラフェンが、電気を通さない絶縁体、抵抗ゼロで電気が流れ続ける超伝導体という2つの電気特性をもつことになり、その切り替えも可能なことから、さまざまなデバイスへの応用可能性がある。研究論文2本が科学誌「Nature」(論文1、論文2)に掲載された。

先行研究では、超伝導状態の金属薄膜層の上にグラフェン層を重ねて成膜した場合に、金属薄膜の影響を受けてグラフェンが超伝導体化する現象が報告されていた。
一方、今回の研究では金属薄膜は使わずにグラフェンだけで超伝導状態を作り出すことに成功している。

その方法は、2つのグラフェン薄膜を積層した超格子を作るというものであり、ポイントは上下のグラフェンの結晶構造をぴったり合わせずに少しだけずらして配置することであるという。

続きはソースで

画像:2層のグラフェンを角度1.1°のずれをもたせて重ねた超格子構造。
電圧印加によって絶縁体と超伝導体の間で電気的性質が切り替わる (出所:MIT)
https://news.mynavi.jp/article/20180319-603006/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180319-603006/
ダウンロード


引用元: 【超伝導】グラフェンの電気特性を絶縁体/超伝導体の間で切り替え制御 - MITなど[03/19]

【超伝導】グラフェンの電気特性を絶縁体/超伝導体の間で切り替え制御 - MITなどの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/01/12(金) 16:15:41.25 ID:CAP_USER BE:822935798-PLT(12345)
sssp://img.5ch.net/ico/kasa-ri.gif
東北大学の研究成果プレスリリース情報『原子層鉄系高温超伝導体で質量ゼロのディラック電子を発見』(共同通信PRワイヤー)

 2018年1月12日 09時00分(最終更新 1月12日 09時00分)

【概要】
東北大学大学院理学研究科の中山耕輔助教、佐藤宇史教授、同大学材料科学高等研究所の高橋隆教授らの研究グループは、原子層鉄系高温超伝導体において、質量ゼロの性質を持つ「ディラック電子(注1)」を発見しました。
この成果は、超高速・超伝導ナノデバイスの実現に道を拓くだけでなく、高温超伝導の発現機構の解明に向けても重要な一歩となります。
本成果は、米国物理学会誌フィジカル・レビュー・Bの注目論文に選ばれ、平成29年12月29日(米国東部時間)にオンライン速報版に掲載されました。

【研究の内容】
今回、東北大学の研究グループは、分子線エピタキシー法(注4)を用いて、酸化物の基板上に原子レベルで制御された高品質な1層のFeSe薄膜を作製しました。

続きはソースで

https://mainichi.jp/articles/20180112/pls/00m/020/501000c

Two-dimensional Dirac semimetal phase in undoped one-monolayer FeSe film
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.220509
images


引用元: 【量子論】原子層鉄系高温超伝導体で質量ゼロのディラック電子を発見 東北大学

【量子論】原子層鉄系高温超伝導体で質量ゼロのディラック電子を発見 東北大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/12/30(土) 21:45:56.02 ID:CAP_USER9
炭素原子とその結合からできた蜂の巣のような六角形格子構造を持つシート状の物質「グラフェン」は、ダイヤモンド以上に炭素同士の結合が強く、世界で最も引っ張りに強い物質であり、世界で最も熱伝導率が良い物質とされている。
そのグラフェンを応用し、「最強の防御」を得られるであろう素材が新たに開発された。

グラフェンを2層構造にした「ジアメン(diamene)」は、強い力が加わった時、と貫通不能なダイヤモンドプレートに変化するという。
薄い素材で軽量なのにこの防御力。防弾服に最適である。

■グラフェンとは?

まず、グラフェンをご存知ない方のために説明しよう。
蜂の巣状に並ぶ炭素原子で形成された平らな金網を想像してもらえばいい。

この配列にすると、各炭素原子の3つの電子が原子の手にかたく結びつき、1つは自由に動けるまま残ることから、炭素に素晴らしい特性をもらたす。
ルーズな電子という特性から伝導テクノロジーにも利用できるし、そのメカニカル特性を利用すれば狭いナノチューブを作り出すこともできる。
どちらもの場合も、グラフェンが平らな二次元構造であるゆえに可能になることだ。

image credit:グラフェンの分子構造モデル
http://livedoor.blogimg.jp/karapaia_zaeega/imgs/f/e/fedd0918.jpg

■グラフェンを二枚重ねることで、弾丸貫通不能な無敵の防御素材に

アメリカ・ニューヨーク市立大学先端科学研究センターの研究者は、グラフェン・シートを2枚重ねて、強い力で潰された時に三次元のダイヤモンド状構造に変化するようにした。
これは4つめの電子が固定されるとグラフェンがまた別の有名な炭素同素体、すなわちダイヤモンドに変化する性質を利用したものだ。

またシートの伝導性が急激に変化することで、いくつか面白い電気的特性が生じる。
だが、その応用としてまず考えられるのは軽量の保護材としてである。

続きはソースで

http://livedoor.blogimg.jp/karapaia_zaeega/imgs/7/6/76b554ab.jpg
http://karapaia.com/archives/52251509.html
ダウンロード


引用元: 【技術】銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果

銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果の続きを読む
スポンサーリンク

このページのトップヘ