理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

コンピュータ

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/10(日) 18:25:55.57 ID:CAP_USER9
http://mainichi.jp/articles/20171210/ddm/003/040/045000c
 「世界最大規模の国産量子コンピューター」とのキャッチフレーズで発表された計算装置に対し、共同研究者からも「量子コンピューターではない」との異論が出ている。内閣府と科学技術振興機構(JST)の予算で、NTTや国立情報学研究所(NII)、東京大の産官学が参加した大型プロジェクト。背景には、すぐに目に見える成果を求められる国主導の研究開発事情が見え隠れする。【酒造唯、須田桃子、阿部周一】

 疑問の声が上がっているのは計算装置「量子ニューラルネットワーク(QNN)」。

続きはソースで

http://cdn.mainichi.jp/vol1/2017/12/10/20171210ddm001010024000p/8.jpg
ダウンロード


引用元: 【量子?コンピューター】「スパコン超え」の国産コンピューター 「量子」命名に共同研究者らか異論 集積回路、従来のまま

【量子?コンピューター】「スパコン超え」の国産コンピューター 「量子」命名に共同研究者らか異論 集積回路、従来のままの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/06(水) 00:07:29.91 ID:CAP_USER9
シンギュラリティが始まったようです。詳細は以下から。

人間を越える人工知能が現れ、自らの力で新たな人工知能を作り上げてゆく未来。シンギュラリティ(技術的特異点)と呼ばれる時系列的な瞬間は2045年頃に起こるとされていましたが、既に私たちはその領域に足を踏み入れていました。

Google Brainの研究者らが「自らの力で新たな人工知能を作り上げるAI」であるAutoMLの開発に成功したと発表したのが今年2017年5月のこと。そしてこの度、AutoMLが作り上げた「子AI」はこれまで人類が作り上げたAIよりも優れた性能を持っていたのです。

Googleの研究者らは「強化学習(reinforcement learning)」と呼ばれる手法を用いて機械学習モデルのデザインを自動化。AutoMLは子AIが特定のタスクへの対応力を発展させるためのニューラルネットワークの制御装置の役割を担います。

今回のNASNetと名付けられた子AIはコンピュータ視覚システムで、リアルタイムの映像から人間、車両、信号、ハンドバッグ、バックパックなどを自動で認識します。

AutoMLはNASNetの性能を査定してその情報をNASNetの改善に用います。この行程を何千回も繰り返します。研究者らはImageNet image classificationとCOCO object detectionという2つの巨大画像データベースサイトで実験を行いましたが、NASNetはこれまで人類が作り上げたどのコンピュータ視覚システムよりもよい成績を収めました。

続きはソースで

配信2017年12月5日10:16
BUZZAP
http://buzzap.jp/news/20171205-google-brain-nasnet/


ダウンロード

引用元: 【IT】GoogleのAIが自力で「子AIの作成」に成功、しかも人間作より優秀 AutoML ★3

GoogleのAIが自力で「子AIの作成」に成功、しかも人間作より優秀 AutoMLの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/10/29(日) 08:04:28.94 ID:CAP_USER9
http://www.afpbb.com/articles/-/3148334?cx_part=top_block&cx_position=1

【10月28日 CNS】世界最高峰のハッキングイベント「GeekPwn2017大会」が24日、中国・上海(Shanghai)で行われた。GeekPwnは国内外からトップレベルのホワイトハッカー(善良なハッカー)集団が集まり、セキュリティやシステムのぜい弱性を実演で示すイベントだ。

 この大会の参加者で、「90後」と呼ばれる1990年代生まれの女性ハッカーは、顔認証システムのぜい弱性を利用し、たった2分30秒で誰の顔を使っても鍵が開くようにしてしまった。

続きはソースで

(c)CNS/JCM/AFPBB News

2017年10月28日 15:23 発信地:中国

ダウンロード (1)


引用元: 【IT】顔認証システムをハッキング、たったの2分半 女子学生が上海の大会で実演

顔認証システムをハッキング、たったの2分半 女子学生が上海の大会で実演の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/09/22(金) 20:18:09.93 ID:CAP_USER9
離れた物質の間を情報が瞬間移動する「量子テレポーテーション」と呼ばれる現象を利用して、現代のスーパーコンピューターをはるかにしのぐ新型の量子コンピューターの基本原理の開発に成功したと東京大学の研究チームが発表しました。
量子コンピューターをめぐっては、NASAやグーグルが別の原理で作られたカナダのベンチャー企業の実用化モデルを購入し研究を進めていますが、研究チームは今回の基本原理を使えばこれを大きく上回る性能の究極の量子コンピューターを生み出せるとしています。

現代のスーパーコンピューターをはるかに上回る新型の量子コンピューターの基本原理の開発に成功したのは、東京大学の古澤明教授の研究チームです。

研究チームは、2つの離れた物質の間で情報が光の速度で瞬間移動する「量子テレポーテーション」と呼ばれる現象に注目しました。
この現象は量子と呼ばれる光の粒など極めて小さな世界で起きるもので、アインシュタインはこれを引き起こすものを「奇妙な遠隔作用」と呼んでいました。

例えば光の粒を人工的に2つに分けて離れた位置に置き、一方に2、もう一方に+2という情報を与えます。
続いてこの2つの光の粒を互いに「量子もつれ」、アインシュタインがいう「奇妙な遠隔作用」が働く状態にすると情報が光の速度で瞬間移動し、光の粒が4という情報を持つようになるのです。

情報の伝え方は現在、足し算、引き算、かけ算、割り算が可能で、今回、研究チームは、光の粒をループ状の回路の中で回しながら瞬時の計算を行える光の粒を100万個同時に作り出すことに成功したということで、超高速の量子コンピューターを作り出す基本原理を開発できたとしています。

今のところ光の粒1組を「量子もつれ」の状態にして計算を行うために縦4メートル横2メートルの装置が必要ですが、新たな基本原理を使えば、今の半分ほどの大きさの装置でほぼ無限に計算を繰り返せる究極の量子コンピューターを生み出せるようになるとしています。

続きはソースで

配信9月22日 18時31分
NHK NEWS WEB
http://www3.nhk.or.jp/news/html/20170922/k10011152541000.html
ダウンロード (1)


引用元: 【研究】“究極の量子コンピューター” へ 基本原理開発に成功 東大研究チーム [無断転載禁止]©2ch.net

“究極の量子コンピューター” へ 基本原理開発に成功 東大研究チームの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/07/17(月) 10:09:50.62 ID:CAP_USER9
 通信データの盗聴を不可能にする「量子暗号」という新技術が注目されている。光の粒を利用する史上最強の暗号だ。実用化すれば機微な情報を扱うビジネスや軍事などの世界に変革をもたらすのは確実で、各国が開発競争にしのぎを削っている。(小野晋史)

光の粒で送受信

 インターネットの普及などで大量の情報が飛び交う現代社会は、盗聴の危険と常に隣り合わせだ。米政府による通信傍受を米中央情報局(CIA)の元職員が告発した「スノーデン事件」は記憶に新しい。

 桁違いの性能を持つ「量子コンピューター」が登場すると既存の暗号は無力化するともいわれ、盗聴を原理的に不可能にする次世代技術が求められるようになった。

 量子とは物質を構成する原子や、さらに小さい素粒子のような極めて小さい粒の総称。量子暗号は光の粒である「光子」を使う技術で、1984年に原理が発表された。

 その仕組みは、まず1粒の光子に暗号文を解読する「鍵」の情報を載せて受け手側に送る。この手法を「量子鍵配送(QKD)」と呼ぶ。鍵が無事に届いたら、送りたい本来のデータを暗号化して送信し、受信者は鍵を使って解読する。

 第三者が鍵を盗もうとして光子に触れると、光子の状態は必ず変化する。このため受信者は鍵が盗まれた可能性に気付き、別の鍵を再送信するよう送り主に依頼。結果的に鍵が流出していない暗号だけでやり取りするので、盗聴を防げるわけだ。鍵は使い捨てで暗号は毎回変わり、データを傍受しても解読できない。

欧米・中国が先行

 研究は急ピッチで進んでいる。情報通信研究機構などは産学官連携で2010年に「東京QKDネットワーク」を構築。東京・大手町と小金井市の間を長さ45キロの光ファイバーで結び、量子暗号で秘匿した動画データの伝送に世界で初めて成功した。

 NECはサイバー攻撃を防ぐ施設で21週間の長期運用に成功。東芝も究極の個人情報といわれるヒトのゲノム(全遺伝情報)解析データの通信に使う実験を行った。

続きはソースで

http://www.sankei.com/smp/economy/news/170716/ecn1707160001-s1.html
http://www.sankei.com/images/news/170716/ecn1707160001-p1.jpg
images


引用元: 【科学】史上最強「量子暗号」が産業・軍事で実用へ 盗聴不可能、宇宙利用も加速…欧米や中国が先行©2ch.net

史上最強「量子暗号」が産業・軍事で実用へ 盗聴不可能、宇宙利用も加速…欧米や中国が先行の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/07/05(水) 20:30:13.28 ID:CAP_USER9
http://itpro.nikkeibp.co.jp/atcl/idg/14/481542/070500390/

2017/07/05 Peter Sayer IDG News Service
 量子コンピューティングの主要な構成要素を、独自のフォトニクスチップと通信機器用の既製部品を使って実現する新たな手法を、カナダの研究チームが考案した。


Credit: IBM Research
 この研究チームが開発したフォトニクスチップは、複数の色を重ね合わせた量子もつれ状態の光子のペアを生成できる。このペアは、2つの「qudit」(量子計算の情報の単位)として操作でき、それぞれが10個の値を取ることができる。

 古典コンピュータは複数の値に対して順番に操作を行う。一方、量子コンピュータは、変数が取り得るすべての値を同時に表すことができ、計算の最後で「正解」に収束する。コンピューティングのすべての問題にこの手法が役立つわけではないが、さまざまな形式の暗号化を解読する際に必要となる、大きな数の因数分解では特に有効だ。

 量子コンピュータの基盤として値を保持する要素は、本質的に不安定で、連携して機能させるためには、もつれ(エンタングルメント)というプロセスで結び付ける必要がある。計算を実行する間、すべてをもつれ状態に維持して機能させるのは、要素の数が増えるほど難しくなる。

http://itpro.nikkeibp.co.jp/atcl/idg/14/481542/070500390/?ST=cm-hardware&P=2

 量子計算の要素のうちで最も基本的なのは、2次元の量子ビットで、2個の値(0と1)を同時に取ることができる。6量子ビットの量子コンピューターであれば、64個(2の6乗)の値すべてを取れる。だがそれには、6つの要素の量子状態を維持する必要がある。

 2016年7月に、ロシアの研究チームが、量子ビットを使って量子コンピュータを開発するよりも、もっと少ない数のquditを維持する方が簡単だとする発表を行った。

続きはソースで

翻訳:内山卓則=ニューズフロント
記事原文(英語)はこちら http://www.itworld.com/article/3205451/high-performance-computing/less-is-more-for-canadian-quantum-computing-researchers.html

ダウンロード (1)


引用元: 【技術】量子コンピューティングの新手法、カナダの研究チームが開発 [無断転載禁止]©2ch.net

量子コンピューティングの新手法、カナダの研究チームが開発の続きを読む
スポンサーリンク

このページのトップヘ