理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

サッカーボール

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/02/09(木) 11:28:23.64 ID:CAP_USER9
日系飛行士のボール宇宙へ

シャトル事故から31年
https://this.kiji.is/202223006968971271?c=39546741839462401
http://nordot-res.cloudinary.com/ch/images/202224020001161220/origin_1.jpg


 【ニューヨーク共同】1986年1月の米スペースシャトル「チャレンジャー」の爆発事故で死亡した日系人宇宙飛行士によって機内に持ち込まれ、残骸から回収されたサッカーボールが、悲劇から約31年を経て国際宇宙ステーションに運ばれた。米航空宇宙局(NASA)が8日発表した。

続きはソースで

ダウンロード


引用元: 【宇宙世紀】日系飛行士のボール、宇宙へ 「チャレンジャー」爆発事故の残骸から回収 [無断転載禁止]©2ch.net

日系飛行士のボール、宇宙へ 「チャレンジャー」爆発事故の残骸から回収の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/08/22(土) 10:22:50.38 ID:???.net
2015年8月22日
理化学研究所
科学技術振興機構

炭素のサッカーボールが集まるとなぜ高温超伝導体になるか
-最先端計算シミュレーションにより長年の謎を解明-

要旨

理化学研究所(理研)創発物性科学研究センター計算物質科学研究チームの酒井志朗研究員、有田亮太郎チームリーダーと、東京大学大学院工学系研究科野村悠祐大学院生(研究当時)、イタリア国際高等研究所マッシモ・カポネ教授の国際共同研究グループは、分子性固体として最高の超伝導転移温度を持つフラーレン固体の超伝導発現メカニズムを解明しました。

炭素は宝石(ダイヤモンド)になったり、鉛筆の芯(黒鉛)になったりと、さまざまな形態をとるユニークな元素ですが、60個集まるとサッカーボール状のフラーレン分子になることが知られています。
この分子がさらに集まって結晶を作り、隙間にアルカリ原子が挿入されると絶対温度にして約40ケルビン(K)の転移温度を持つ高温超伝導体[1]となりますが、その超伝導発現のメカニズムについては、以下のような未解明の問題があり、なぜフラーレン固体が高温超伝導体になるか、は長く謎に包まれていました。

一般に、超伝導体中の電子はクーパー対[2]と呼ばれるペアをつくって運動します。
これまでの実験的研究からフラーレン固体中でもクーパー対が形成されていることが明らかにされていました。
その一方で、フラーレン分子の中で電子の間には強いクーロン斥力[3]が働くことが知られています。
実際、フラーレン同士の距離を少し広げると、そのクーロン斥力が原因で、超伝導状態からモット絶縁体[4]という絶縁状態に転移してしまいます。
単純に考えると、同じ符号の電荷を持つ電子は、クーロン斥力によりクーパー対の形成が強く阻害されるため、高温超伝導の実現は難しくなると考えられます。
このように、なぜ強いクーロン斥力が働くフラーレン固体中にクーパー対が形成されるのかは長らく未解決のままでした。

国際共同研究グループは、フラーレン固体の結晶構造以外の実験情報を使わずに(非経験的)に超伝導状態を解析する方法論を開発し、スーパーコンピュータを使った大規模数値計算を行いました。

100,000Kのエネルギースケールの電子状態計算からはじめ、どの状態が超伝導に関わるのかに焦点をあわせて、最終的に何度で超伝導転移が起こるかを誤差10K未満という驚くべき精度で再現することに成功しました。
また、超伝導状態の詳細な解析の結果、フラーレン固体では原子の振動(格子振動)とクーロン斥力が特異的に助け合って高温超伝導を実現していることが明らかになりました。
このメカニズムは、格子振動とクーロン斥力が競合しあう従来型の超伝導機構とは本質的に違うものです。

超伝導発現に電子相関が絡む非従来型と呼ばれる超伝導体について、本研究レベルの精度で実験相図を再現した例はなく、方法論開発の面からも新超伝導体の物質設計の可能性を開く成果と言えます。

本研究は、科学技術振興機構(JST)戦略的創造研究推進事業総括実施型研究(ERATO)「磯部縮退π集積プロジェクト」(研究総括:磯部寛之)の一環として行われたもので、米国の科学雑誌『Science Advances』(8月21日付け:日本時間8月22日)に掲載されます。

(引用ここまで 全文は引用元参照)

images


▽引用元
理化学研究所 2015年8月22日プレスリリース
http://www.riken.jp/pr/press/2015/20150822_1/

引用元: 【物理】炭素のサッカーボールが集まるとなぜ高温超伝導体になるか 最先端計算シミュレーションにより長年の謎を解明/#理化学研究所_

炭素のサッカーボールが集まるとなぜ高温超伝導体になるか 最先端計算シミュレーションにより長年の謎を解明/#理化学研究所の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 河津落とし(WiMAX) 2014/01/08(水) 21:11:57.37 ID:YPaJakcT0 BE:4619463269-PLT(12001) ポイント特典

東邦大学、「フラーレンC60」誘導体の新たな合成手法を開発

東邦大学は12月27日、「サッカーボール型分子 フラーレンC60」誘導体の新たな合成手法を開発したと発表した。
今回の成果は、同大学院理学研究科 化学専攻の内山幸也氏と理学部化学科の森山広思教授によるもの。

フラーレンC60とは、一般に炭素原子が60個集まったサッカーボール型分子のこと。フラーレンは有機薄膜太陽電池のn型半導体として開発が進められているほか、抗酸化作用をもつことから、最近では化粧水などに含まれていることでも知られている。


【画像】
http://news.mynavi.jp/news/2014/01/07/054/images/001l.jpg
同研究で新規に合成された多付加フラーレン誘導体は、有機薄膜太陽電池やライフサイエンスなどさまざまな分野への応用が期待されるとしている


この分子は、さまざまな物質(原子や分子)を付加したり、中に閉じ込めたりすることができることが特徴。このうち「多付加フラーレン誘導体」と呼ばれる物質群は、本来フラーレンが持ち得ない付加分子に由来するさまざまな性質を有する。有機薄膜太陽電池といったエネルギー分野のほか、半導体や医薬剤などの分野で応用が期待されており、現在、多付加フラーレン誘導体の新たな可能性を開拓するため、研究・開発が行われている。

しかし、多付加フラーレン誘導体を合成する際、付加位置の異なる化合物(付加位置異性体)との混合物となり、単一の生成物として得難いことが以前から問題となっているという。その解決方法の1つとして、単一の生成物として得ることのできるハロゲン化フラーレン(ハロゲン:周期表において第17族に属する元素でフッ素〔F〕・塩素〔Cl〕・臭素〔Br〕など)を出発物質として用い、そのハロゲン部位を置換するという手法が考えらている。

cfca8214.jpg

http://news.mynavi.jp/news/2014/01/07/054/index.html

(続く)



東邦大、「サッカーボール型分子 フラーレンC60」の合成手法を開発 臭素化フラーレンに銀(Ag)を添加し脱臭の続きを読む
スポンサーリンク

このページのトップヘ