理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

シリコン

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/07/11(木) 01:11:04.95 ID:CAP_USER
インテルは「ムーアの法則」を終わらせない──新たな“技術リーダー”が考える半導体の未来(記事全文は、ソースをご覧ください。)
https://wired.jp/2019/07/10/intels-new-chip-wizard-plan-bring-back-magic/
2019.07.10 WED 18:30
WIRED
TEXT BY TOM SIMONITE

半導体の集積率が18カ月で2倍になるという「ムーアの法則」の限界が指摘されるなか、その限界論に異を唱えた男がいる。インテルのシリコンエンジニアリング担当上級副社長、ジム・ケラーだ。アップルやテスラの半導体設計を支えてきた業界の大物は、いかに半導体の進化を加速させ、インテルの存在感を再び高めようというのか。

https://wired.jp/wp-content/uploads/2019/07/business_intel_1158822168.jpg
写真:XAKAR/GETTY IMAGES

この6月の最終日、サンフランシスコ一帯をプライドパレードが虹色に埋め尽くした日曜のことだ。インテルは街のシンボルであるコイトタワーのすぐ近くで、ややマニアックとも言える少人数のパーティーを開催していた。

このイヴェントは、過去50年の半導体産業における飛躍的な品質の改善が、どれだけ技術や社会の進歩を加速させてきたかを祝う集まりだった。スタートアップやヴェンチャーキャピタル、大手テック企業から100人以上が参加し、5時間にも及んだ。誰もが半導体をテーマにしたカクテルを飲みながら、いかに砂がシリコンチップへと加工されるかといった会話を交わしていたのである。

そして、まだ“パーティー”は終わっておらず、勢いは持続するのだという主張が飛び交っていた。

「これからも、まだまだ続きますよ」と、イヴェントの共同主催者である半導体業界の大物は語った。発言の主は、インテルのシリコンエンジニアリング担当上級副社長として昨年入社した、ジム・ケラーである。

そしてケラーは、インテルの創業者のひとりであるゴードン・ムーアが54年前に提唱した「半導体の集積率は18カ月で2倍になる」というアイデアに触れ、こう語った。「ムーアの法則の勢いは衰えないのです」

・成長の機会を失ってきたインテル
今回のイヴェントの目的は、半導体産業が過去半世紀に記録したのと同じくらい大きな成長を、低迷する名門企業であるインテルが実現できることを明確に示すためのものだった。

インテルはモバイルデヴァイスの市場でチャンスをつかみ損なった。そしてポケットサイズのガジェットの普及に伴い、かつてインテルの独壇場だったパソコン市場は縮小していった。アップルやテスラの躍進を支えてきた半導体業界の大物であるケラーは、そんな厳しい時期にインテルに加わった。

いまでもインテルは、クラウドコンピューティングを支えるサーヴァー用チップの市場では支配的なシェアを握っている。しかし、最新の2世代のチップ技術の開発では出遅れている。

今年4月にインテルは、5Gのワイヤレス端末向けチップの事業を断念すると発表した。これはモバイル技術の次なる大きな波から5Gから遠ざかることを意味する。さらに、アップルの「iPhone」の一部にインテル製モデムを搭載する取引からも撤退することを明らかにしている。翌月になってインテルは投資家に対し、今後2年にわたって利益幅の縮小が予想されると説明している。

・技術開発でも出遅れ
こうした懸案材料は今回のイヴェントではほとんど語られず、技術の歴史と未来に焦点が当てられた。会場にいたインテルの従業員たちが顕微鏡の横に立っており、参加者たちは微細な最新のトランジスターをレンズ越しに覗き込むことができた。このトランジスターは、電流を1秒間に数十億回もオン/オフできる高性能なものだ。

イヴェントにはケラーに加えて、インテルのチーフアーキテクトであるラジャ・コドゥリや最高技術責任者(CTO)のマイク・メイベリーがスピーカーとして登壇した。コドゥリはアップルで一緒に働いていたころから知っているケラーを、自分がインテルに誘ったのだと語った。

コンピューティングの歴史は、インテルやムーアの法則と密接に結びついてきた。これまでにインテルは何十年もの間、新しい素材や加工技術の発明、そしてトランジスターの微細化によって、性能を2倍にするペースを維持してきた。最近ではこのペースが鈍化しており、インテルとコンピューティングの進化との結びつきに、ほころびが見えている。

続きはソースで

ダウンロード


引用元: 【半導体/集積回路】インテルは「ムーアの法則」を終わらせない──新たな“技術リーダー”が考える半導体の未来[07/11]

インテルは「ムーアの法則」を終わらせない──新たな“技術リーダー”が考える半導体の未来の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/13(木) 04:13:51.19 ID:CAP_USER
軽量・低コスト、太陽電池の新手法開発 京都大、実用化に期待
https://headlines.yahoo.co.jp/hl?a=20190613-00000002-kyt-l26
2019/6/13(木) 2:00配信
YAHOO!JAPAN NEWS,京都新聞

 太陽光発電の新しい手法を開発したと、京都大のグループが発表した。現状のシリコン太陽電池と比べて、軽量でコストの低い有機太陽電池の実用化につながる可能性がある。
 成果は13日、米化学会誌に掲載される。
 化石燃料の枯渇や温暖化の懸念がある中、太陽光など再生可能エネルギーが期待を集めている。
 しかし実用化されているシリコンを使った太陽光発電は、重量やコストが課題となる。
 こうした課題を解決するため、軽量で安価な有機化合物を使った太陽電池が注目されているが、発電効率の向上が必要となっている。

続きはソースで
ダウンロード


引用元: 【再エネ】軽量・低コスト、太陽電池の新手法開発 京都大、実用化に期待[06/13]

軽量・低コスト、太陽電池の新手法開発 京都大、実用化に期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/21(木) 14:55:25.37 ID:CAP_USER
超強力なスーパーコンピューターの処理能力をはるかに凌ぎ、産業界全体に変革をもたらす可能性があるとして、量子コンピューターの研究・開発に多額の資金が投入されている。日々報じられる関連ニュースを読み解くために押さえておきたい基礎知識を説明する。

子コンピューターは、ほとんど神秘的といえる量子力学の現象を利用して、処理能力を飛躍的に向上させる。現在、そして将来のもっとも高性能なスーパー・コンピューターの処理能力さえもはるかに凌ぐことが期待されている。

量子コンピューターは従来のコンピューター(古典的コンピューター)を完全に置き換えるものではない。古典的コンピューターは今後も、ほとんどの問題に対処するためのもっとも簡単で経済的な解決策として使われ続けるだろう。だが、量子コンピューターは、材料科学から医薬品研究に至るまで、さまざまな分野に胸躍る進歩をもたらすことが期待されている。すでに、量子コンピューターを用いて、電気自動車用のより軽く強力な電池を開発しようとしたり、新薬開発に役立てたりしようとしている企業もある。

量子コンピューターが持つ力の秘密は、量子ビット(キュービット)を生成し、操作する能力にある。

■「キュービット」とは何か?

現在のコンピューターは、1か0を表す一連の電気パルスまたは光パルスであるビットを用いて演算をする。ツイッターのツイートからメール、iTunesの楽曲、YouTubeの動画に至るまで、さまざまなものが本質的にはこの2進数の長い文字列でできている。

一方、量子コンピューターは演算の単位として通常、電子や光子といった素粒子である「キュービット」を用いる。キュービットを生成し、操作することは科学的・工学的に困難な課題となっている。IBM、グーグル、リゲッティ・コンピューティング(Rigetti Computing)といったいくつかの企業は、深宇宙よりも低温に冷却された超伝導回路を用いている。イオンQ(IonQ)などの他の企業は、超高真空チャンバー内のシリコンチップ上の電磁場に個々の原子を閉じ込める手法を用いている。どちらの場合も、制御された量子状態にあるキュービットを、外部環境から隔絶することを目指している。

キュービットは、いくつかの奇妙な量子的性質を持つ。その結果、相互につながった一連のキュービットは、同数のバイナリー・ビットよりはるかに強力な処理能力を持つことになる。キュービットの不可思議な量子的性質には、「重ね合わせ」として知られる性質や「量子もつれ」と呼ばれる性質がある。

■「重ね合わせ」とは何か?

キュービットは、1と0の数多くの取り得る組み合わせを同時に表せる。このような、同時に複数の状態で存在できる能力を「重ね合わせ」と呼ぶ。研究者は、精密レーザーやマイクロ波ビームを用いてキュービットを操作し、キュービットを重ね合わせ状態にする。

直感に反するこの現象により、重ね合わせ状態にあるいくつかのキュービットを備えた量子コンピューターは、膨大な数の起こり得る結果を同時に並列して処理できる。最終的な計算結果は、キュービットを測定して初めて得られる。測定するとキュービットの量子状態は直ちに1または0に「崩壊」する。

https://cdn.technologyreview.jp/wp-content/uploads/sites/2/2019/02/18140458/062118rigetti0584finalsquare-cropped.jpg 

■「量子もつれ」とは何か? 

研究者は、「もつれ合った」キュービットの対を生成できる。対を成す2つのキュービットが同一の量子状態で存在することを「量子もつれ」という。もつれ合ったキュービットの一方の量子状態を変化させると、もう一方の量子状態も予測可能な形で即座に変化する。キュービット同士が距離的に非常に離れていたとしても同じ現象が起こる。

量子もつれが起こる理由や仕組みについてはよく分かっていない。この現象はアインシュタインすらも困惑させた。アインシュタインが量子もつれのことを「不気味な遠隔作用」と表現したのは有名だ。だが、量子もつれこそ、量子コンピューターの能力の鍵となる現象だ。従来のコンピューターでは、ビット数が倍になれば、処理能力も倍になる。一方、量子もつれのおかげで、量子コンピューターにキュービットを追加すると、演算処理能力は指数関数的に増加する。

量子コンピューターは、量子の数珠つなぎのような、もつれ合ったキュービットを利用することで魔法のような能力を発揮する。特別に設計された量子アルゴリズムを用いて計算速度を向上できる量子コンピューターの能力こそ、量子コンピューターの可能性が大きな注目を集めている理由となっている。

以上が、量子コンピューターのプラス面だ。マイナス面は、「デコヒーレンス」により量子コンピューターが従来のコンピューターよりはるかにエラーを起こしやすいことだ。

■「デコヒーレンス」とは何か?

キュービットが外部環境と相互作用してキュービットの量子的な状態が衰退し、最終的に失われることを「デコヒーレンス」と呼ぶ。

続きはソースで

https://cdn.technologyreview.jp/wp-content/uploads/sites/2/2019/02/18140458/062118rigetti0584finalsquare-cropped.jpg 
images


引用元: 【IT】〈解説〉量子コンピューターとは何か?ニュースを読む前に押さえたい基礎知識[02/21]

量子コンピューターとは何か?ニュースを読む前に押さえたい基礎知識の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/12/25(火) 17:40:01.38 ID:CAP_USER
静岡大学の小野行徳教授らのグループは、日本電信電話株式会社、北海道大学の研究グループと共同で、電力供給なしにトランジスタの電流を増幅させることに成功した。新たな低消費電力デバイスの開発が期待される。

 コンピュータの高性能化は、構成部品であるトランジスタの電流を、いかに少ない電力で増大させるかが鍵だ。従来の増幅法では電力供給が不可欠で、供給電力が発熱の原因となることが性能向上の阻害要因だった。

 通常、物質中の電子は、電位の高い場所から低い場所へと移動し、等電位の端子間に電子は流れず電流は生じない。しかし、電子同士の衝突頻度が非常に高い特別な場合には、電子は流体のように振る舞い、近くに強い流れがあると、その流れに沿った新たな流れが生じる。この振る舞いは電子流体と呼ばれ、これまでは、ヒ化ガリウム(GaAs)などの一部の物質で、マイクロメートル以上の大きなスケールでしか観測されなかった。

続きはソースで

論文情報:【Nature Communications】Electron aspirator using electron-electron scattering in nanoscale silicon
https://www.nature.com/articles/s41467-018-07278-8

https://univ-journal.jp/24158/
ダウンロード


引用元: 【トランジスタ】電力供給なしにトランジスタの電流を増幅、静岡大学などが成功[12/25]

【トランジスタ】電力供給なしにトランジスタの電流を増幅、静岡大学などが成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/12/03(月) 14:32:26.78 ID:CAP_USER
自動車メーカー・BMWのデザイン部と、マサチューセッツ工科大学(MIT)のSelf Assembly Lab(自己組織研究所)が「液体状のシリコンをゲル内に注入して好きな形に出力できる3Dプリント技術」を共同開発したと発表しています。従来の3Dプリンターは平坦な層の上にサポート材を使いながら樹脂を重ねていきますが、新型の液体3Dプリンターでは支えがいらず、自由な形を爆速で出力することが可能とのことです。

Large-Scale Rapid Liquid Printing | 3D Printing and Additive Manufacturing
https://www.liebertpub.com/doi/abs/10.1089/3dp.2017.0037

Liquid to Air: Pneumatic Objects — Self-Assembly Lab
https://selfassemblylab.mit.edu/new-gallery-1/

Liquid Printed Pneumatics — Self-Assembly Lab
https://selfassemblylab.mit.edu/liquid-printed-pneumatics/

実際に液体3Dプリンターで出力する様子や、出力したシリコン部品を膨張させる様子は、以下のサイトにあるムービーで確認できます。

Liquid Printed Pneumatics — Self-Assembly Lab

ロボットアームがシリコンインクを注入する針を、粒状のゲルで満たされた水槽の中に差し込みます。粒状ゲルは流体のシリコンインクを支えるだけでなく、シリコンを硬化させる役割もあるとのこと。

針の先からシリコンが絞り出され、みるみるうちに水槽の中にポンプ状の部品が形成されていきます。新しい液体3Dプリンターの出力は非常に早く、大きさにもよりますが、すべての出力にかかる時間はおよそ数分とのこと。

あっという間に部品の内部に空気圧を送ると縦に伸縮するポンプの完成。

続きはソースで

https://i.gzn.jp/img/2018/12/03/liquid-printed-pneumatics/00_m.png
https://i.gzn.jp/img/2018/12/03/liquid-printed-pneumatics/00_m.png

■動画
MIT's 3D-printed inflatables could shape the interiors of the car of future https://youtu.be/fBSSyXU2hmE



GIGAZINE
https://gigazine.net/news/20181203-liquid-printed-pneumatics/
ダウンロード


引用元: 伸縮自在なシリコンを水槽の中に出力する「液体3Dプリンター」をあのBMWとMITが共同開発[12/03]

伸縮自在なシリコンを水槽の中に出力する「液体3Dプリンター」をあのBMWとMITが共同開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/11/07(水) 13:36:47.40 ID:CAP_USER
岸川 諒子氏(産業技術総合研究所 物理計測標準研究部門)と川崎 繁男(JAXA宇宙科学研究所)らからなる共同研究チームは、窒化ガリウムダイオードとシリコン高周波整合回路を混成したHySIC(Hybrid Semiconductor Integrated Circuit)構造により、マイクロ波電力を直流電力に変換する高周波整流回路を実現し、その動作実証に世界で初めて成功しました。開発したHySICはマイクロ波で伝送した電力を効率よく直流電流に変換できることが期待され、かつ、宇宙線耐性が強く、また、小型化・軽量化が可能なデバイスです。今回動作実証したHySIC高周波整流回路を高性能化することで、人工衛星内の無線給電など将来の宇宙開発や地上応用が期待されます。

■開発したHySIC整流回路(左)と概略図(右)
http://www.isas.jaxa.jp/topics/assets_c/2018/11/20181106_fig-thumb-700xauto-5428.jpg

本研究成果は、2018年11月6~9日に国立京都国際会館(京都府京都市)で開催される2018 Asia Pacific Microwave Conference(APMC 2018)にて発表されます。

なお、本研究の一部は、一般財団法人宇宙システム開発利用推進機構からJAXA宇宙科学研究所に委託された経済産業省「太陽光発電無線送受電高効率化の研究開発」(平成26年度~平成28年度) の成果が基になっています。

IT技術の進歩と無線通信が社会インフラとして整備されつつあり、情報のワイヤレス化が急速に進んでいます。次のステップは、電力・電源のワイヤレス化、つまりコンセントやバッテリーフリーで様々な電気機器類が作動することでしょう。電力が無線で供給されるようになれば、電源ケーブルの配線が難しい場所で電気機器類を動かすことができます。また、様々な制約からバッテリーの設置やバッテリーへの充電が難しい場合でも電気機器類を使うことができるようにもなります。

考案されている無線電力伝送方法は大きく分けて三つ、電磁誘導を用いる方法、磁気共鳴・電界共鳴を用いる方法、電波で電力を伝送する方法があります。マイクロ波を用いた無線伝送技術は、電波で電力を送る方法のなかでもマイクロ波と呼ばれる波長帯の電波を用いる方法です。他の方法と違い、数m以上の長距離でも電力伝送できるというメリットがあり、様々な分野での利用が期待されています。例えば、建物内の無線電力伝送システム、EV車の充電を含め電気機器の無線充電、宇宙で太陽光発電した電力の地上への送電、IoT端末機器への電源供給などです。

そして、マイクロ波無線電力伝送は、衛星・探査機への応用も期待されています。人工衛星や探査機など宇宙機内にはガスセンサー、振動センサー、温度センサーなど多数のセンサーが取り付けられ、機体や装置の状態を常に監視しています。こういったセンサー類にケーブルで電力供給する場合、コネクターの接続ミスや破損により機器が使えなくなるおそれがあります。これを避けるために繰り返す試験は、衛星や探査機のコストを押し上げてしまいます。無線で電力を供給できれば、機器類へのケーブル設置作業が不要になりますから、衛星の製作が簡単で短期間に行えるようになり、結果的には低コスト化を実現できます。このほかにもケーブルを取り付けた場合に比べ、無線電力供給では宇宙機の形状変化の自由度が高くなるというメリットもあります。

さて、無線給電方法で電気機器を動かすためには、マイクロ波で送った電力を直流電流に変換する必要があるため、いかに効率よく直流電流に変換できるかが実用化への第一歩となります。

宇宙科学研究所 http://www.isas.jaxa.jp/topics/001945.html 
■図1 センサーへの無線給電システムの概要とHySIC整流回路
http://www.isas.jaxa.jp/topics/assets_c/2018/11/20181106_fig1-thumb-700xauto-5431.jpg

本研究では衛星や探査機搭載用の無線電力伝送システムの開発を目指し、マイクロ波の電力を効率よく直流電流に変換する回路(整流回路)の設計と製作、動作確認を行いました。整流回路でいかに効率よくマイクロ波の電力を効率よく直流電流に変換できるかによって、無線電力伝送システムの性能が決まると言っても過言ではありません。

共同研究チームは、整流回路にHySIC(Hybrid Semiconductor Integrated Circuit)技術を適用しました。HySIC技術は、共同研究チームの一員である川崎 繁男が2014年に提唱した技術で、複数の半導体を一つの回路に混成させ、一種類の半導体では実現不可能な機能を持たせることができる回路のことです。HySICは低コスト・超小型化を可能とする高周波集積回路として期待されています。

整流回路は、整流デバイス(ダイオード)・(平滑回路・)入力整合回路・負荷抵抗から構成されます。マイクロ波から直流電流へ変換するにはダイオードを用います。本研究ではダイオードとしてGaN(窒化ガリウム)を用いました。

続きはソースで
ダウンロード


引用元: 宇宙機内のセンサーに無線給電化が可能に ― 窒化ガリウム/シリコンハイブリッド高周波整流回路の動作実証に成功[11/06]

宇宙機内のセンサーに無線給電化が可能に ― 窒化ガリウム/シリコンハイブリッド高周波整流回路の動作実証に成功の続きを読む

このページのトップヘ