理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スピン

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/11(土) 22:22:37.81 ID:???.net
東大、ミリメートルサイズの磁石が量子力学的に振る舞うことを発見 | マイナビニュース
http://news.mynavi.jp/news/2015/07/10/500/
記者会見 超伝導量子ビットと磁石の球のコヒーレントな結合に初めて成功 ...
http://www.rcast.u-tokyo.ac.jp/pressrelease/pdf/270710release_rcast.pdf

画像
http://n.mynv.jp/news/2015/07/10/500/images/001l.jpg
研究に用いられた直径1mmのYIG単結晶球
http://n.mynv.jp/news/2015/07/10/500/images/002l.jpg
マグノンとマイクロ波光子の相互作用により生じたエネルギー準位反交差
http://n.mynv.jp/news/2015/07/10/500/images/003l.jpg
空洞共振器中に置かれたYIG球と超伝導量子ビットの模式図。共振器内の電界と磁界の分布が上下に分けて示されている。左上の写真は実験に用いられた直径0.5mmのYIG球。右下は、シリコン基板上に作られた超伝導量子ビットのアルミニウム製のアンテナ電極(白色部分)と、その間にあるジョセフソン接合(中央重なり部分)の画像
http://n.mynv.jp/news/2015/07/10/500/images/004l.jpg
研究グループが目指す量子インタフェース方式の概念図
http://n.mynv.jp/news/2015/07/10/500/images/005l.jpg
研究グループが目指す量子中継器の概念図


東京大学(東大)は7月10日、超伝導回路を用いた量子ビット素子と強磁性体中の集団的スピン揺らぎの量子(マグノン)をコヒーレントに相互作用させることに成功し、ミリメートルサイズの磁石の揺らぎが量子力学的に振る舞うことを発見したほか、その揺らぎの自由度を制御する方法を開発したと発表した。

同成果は、東大 先端科学技術研究センター 量子情報物理工学分野の中村泰信 教授(理化学研究所創発物性科学研究センター チームリーダー)、田渕豊 特任研究員(現 日本学術振興会特別研究員)および同大 工学系研究科 物理工学専攻 修士学生の石野誠一郎氏らによるもの。詳細は米国科学振興協会(AAAS)発行の学術雑誌「Science」に掲載された。

量子コンピュータや量子暗号通信といった量子力学の応用分野の1つに、情報処理と通信を統合した量子情報ネットワーク技術があるが、これを実現するためには、互いの間で量子情報を授受するためのインタフェースが必要となり、マイクロ波と光の活用が期待されている。しかし、量子状態をコヒーレントに転写する方法があり、その手法として、ナノ機械振動子や単独の電子スピン、常磁性電子スピン集団などを用いた研究が進められてきたが、強磁性体中のスピン集団に着目し、スピン波のエネルギー励起運動の量子であるマグノンを用いた研究はこれまでなかったという。

研究では、強磁性絶縁体であるイットリウム鉄ガーネット(YIG)単結晶球の中のマグノンと共振器の中のマイクロ波光子の結合について調査を実施。

続きはソースで

images




引用元: 【量子力学】ミリメートルサイズの磁石の揺らぎが量子力学的に振る舞うことを発見 東大

ミリメートルサイズの磁石の揺らぎが量子力学的に振る舞うことを発見 東大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/01(水) 23:21:46.14 ID:???.net
-量子計算機等の基盤となるもつれ電子対発生器の実現へ大きな一歩-
要旨

理化学研究所(理研)創発物性科学研究センター量子機能システム研究グループの樽茶清悟グループディレクター(東京大学大学院工学系研究科教授)、量子効果デバイス研究チームのラッセル・スチュワート・ディーコン研究員、大阪大学産業科学研究所の大岩顕教授、東京大学生産技術研究所の平川一彦教授らの共同研究グループ※は、超伝導体[1]中の電子対、「クーパー対[2]」を構成する2つのもつれた電子を2つの量子ドット[3]へそれぞれ分離し、その後、別の超伝導体の中で再び結合させて検出することに成功しました。このことにより、空間的に離れた2個の電子の間に非局所性[4]の量子もつれ[5](非局所量子もつれ)が存在することを初めて確認しました。

もつれた対状態にある2つの粒子は、空間的に離れていても、1つの粒子に対する測定が、瞬時に残りの粒子に影響します。この現象は量子状態の情報を長距離伝送する量子テレポーテーション[6]の実験などで実証されています。こうした実験の鍵は、もつれた粒子対をどのように生成するかという点にあります。しかし、これまで、非局所量子もつれを固体デバイス中で実現するのは困難だとされてきました。これは、固体の中の電子は乱れた環境にあり、もつれ電子対を1つだけ生成し、それを空間分離することが難しいためです。

続きはソースで

ダウンロード

本研究は、英国のオンライン科学雑誌『Nature Communications』(7月1日付け)に掲載されます。

http://www.riken.jp/pr/press/2015/20150701_2/

引用元: 【量子技術】固体中で非局所量子もつれを実証

固体中で非局所量子もつれを実証の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/03/17(火) 00:21:24.46 ID:???.net
掲載日:2015年3月16日
http://news.mynavi.jp/news/2015/03/16/044/

000


 東北大学と大阪大学の研究グループは、従来の物質とは全く異なる新しい状態をもつトポロジカル絶縁体と普通の金属を接合させることによって、普通の金属にトポロジカルな性質を付与する「トポロジカル近接効果」という新しい現象を発見し、質量のない高速のディラック電子をトポロジカル絶縁体の外に取り出すことに成功したと発表した。

 同研究グループは、東北大学大学院理学研究科の佐藤宇史准教授、同原子分子材料科学高等研究機構の高橋隆教授、大阪大学産業科学研究所の小口多美夫教授、および同研究所の安藤陽一教授らが参加。同成果は、次世代省エネルギー電子機器を支えるスピントロ二クス材料技術とその産業化に大きく貢献することが期待される。

 今回の開発で、東北大学と大阪大学の共同研究グループは、2010年に同グループが発見したTlBiSe2(Tl:タリウム、Bi:ビスマス、Se:セレン)というトポロジカル絶縁体の上に、2原子層のBi超薄膜を接合し、スピン分解光電子分光という手法を用いて、ディラック錐とBi超薄膜のエネルギー状態を高精度で調べた。その結果、Bi超薄膜によってディラック錐のエネルギー状態が劇的な影響を受け、もともとトポロジカル絶縁体の表面に局在していたディラック電子がBi側に移動する「トポロジカル近接効果」が起こっていることを初めて突き止めました。

続きはソースで

<参照>
普通の金属にトポロジカルな性質を付与することに成功 | AIMR
http://www.wpi-aimr.tohoku.ac.jp/jp/news/press/2015/20150313_000544.html

Topological proximity effect in a topological insulator hybrid : Nature Communications : Nature Publishing Group
http://www.nature.com/ncomms/2015/150312/ncomms7547/full/ncomms7547.html

引用元: 【材料物性】東北大など、普通の金属にトポロジカルな性質を付与することに成功

東北大など、普通の金属にトポロジカルな性質を付与することに成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/01/11(日) 19:55:55.79 ID:???.net
2015年1月9日ニュース「光からスピン流を生成する新原理発見」 | SciencePortal
http://scienceportal.jst.go.jp/news/newsflash_review/newsflash/2015/01/20150109_01.html

東北大学 プレスリリース
http://www.tohoku.ac.jp/japanese/2015/01/press20150107-01.html
日本原子力研究開発機構 プレスリリース
http://www.jaea.go.jp/02/press2014/p15010803/
科学技術振興機構 プレスリリース
http://www.jst.go.jp/pr/announce/20150108/


特定の金属微粒子を含む絶縁体の磁石に可視光を照射して、スピン(磁気)の流れを生成できる新しい原理を、東北大学金属材料研究所の内田健一(うちだ けんいち)准教授らが実証した。次世代のスピントロニクスや分散型発電、省エネ技術の基盤となる発見として期待される。東北大学の齊藤英治(さいとう えいじ)教授と日本原子力研究開発機構先端基礎研究センターの前川禎通(まえかわ さだみち)センター長、安立裕人(あだち ひろと)副主任研究員らとの共同研究で、1月8日付の英オンライン科学誌ネイチャーコミュニケーションズに発表した。

持続可能な社会に向けた環境、エネルギー問題への取り組みの中で、身近に存在する光、熱、振動、電磁波などをエネルギー源として利用するような、新しいエネルギー変換原理の創出が待望されている。クリーンで信頼性の高いエネルギー変換技術の候補として太陽電池や熱電素子、圧電素子などを用いた発電技術が盛んに研究されている。

研究グループは、金属微粒子への光照射で誘起される「表面プラズモン」と呼ばれる電子の集団運動を磁石の中で励起することで、絶縁体磁石に埋め込んだ金微粒子近傍に強力な電磁場を発生させ、この電磁場でスピンの運動を効果的に駆動させた。こうして、絶縁体で光のエネルギーのスピン流への変換に世界で初めて成功した。スピン流を電流に変換する技術は確立しており、光から電流を生成する新しい変換原理が創出されたことになる。

今回の実験では、絶縁体である磁性ガーネット(BiY2Fe5O12)薄膜の表面に白金(Pt)薄膜を接合した素子を使った。この素子は、磁性ガーネット層にナノ(ナノは10億分の1)メートルサイズの金(Au)微粒子を埋め込んだ構造となっている。これに分光した可視領域の単色光を照射しながら、白金層に発生する電気信号の精密測定を行った。

続きはソースで

画像
http://scienceportal.jst.go.jp/news/newsflash_review/newsflash/img/150109_img1_w500.jpg
図. 表面プラズモンを用いた光-スピン変換。
(a)実験に用いた素子の模式図。可視光を照射すると、金微粒子中に励起された表面プラズモンを介して光とスピンが相互作用し、磁性ガーネットと白金の界面近傍にスピン流が生成される。このスピン流を起電力に変換して、電気信号として観測した。
(b)走査型電子顕微鏡で撮影した金微粒子。直径100nm(ナノメートル)以下の金微粒子が光アンテナとして作用する。
(c)金微粒子近傍の電磁場分布のシミュレーション結果。可視光域の波長690nm近傍の光を照射すると、表面プラズモン共鳴が生じるため、金微粒子の周りに局在した強力な電磁場が発生し(左図)、スピンの運動が励起される。表面プラズモン共鳴条件を満たさない波長500nmの光を照射した場合
には、電磁場の増強効果は起こらない(右図)。
(提供:東北大学)

引用元: 【電磁気学/エネルギー技術】光からスピン流を生成する新原理発見

光からスピン流を生成する新原理発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2014/12/13(土) 07:29:10.47 ID:???0.net BE:348439423-PLT(13557)
東京大学の松本洋介助教らによる研究グループは、電子の形の揺らぎを媒介とした新しいタイプの超伝導を常圧下で実現できることを発見した。

これまでに発見されてきた超伝導現象は、電子の磁気的な自由度(スピン)によって引き起こされることが分かっている。
一方で、電子は形(軌道)の自由度も持っているため、これを利用した新しい超伝導現象が模索されている。

*+*+ 財経新聞 +*+*
http://www.zaikei.co.jp/article/20141212/226359.html

引用元: 【社会】東京大学「電子軌道の量子揺らぎによって発生する新しい超伝導現象を発見」

東京大学「電子軌道の量子揺らぎによって発生する新しい超伝導現象を発見」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2014/10/10(金) 23:54:11.19 ID:???.net
近藤状態によって散乱される電子波の位相のずれを初めて観測 ー 40年前の予言を初めて実証 ー : 物理工学専攻 山本倫久講師、樽茶清悟教授
2014/09/22

東京大学の研究グループは、独自に開発した2経路干渉計を用いて近藤状態によって散乱される電子の波動関数の位相が90度ずれる様子を初めて捉えました。

1964年に近藤淳によって初めて理論提唱された近藤効果は、電子スピンが関与する多電子の相互作用効果の中で最も代表的なものとして知られています。
近藤効果は、局在スピンとそれを取り囲む多数の伝導電子との間の相互作用によって生じ、局在スピンの磁気が伝導電子との結合によって打ち消される現象(遮蔽)です。
近藤状態の電気的な性質は、近藤状態に入射する電子がどう散乱されるかで説明されます。
局在スピンの遮蔽過程では散乱される電子のスピンは保たれますが、散乱される電子の波動関数の位相が90度ずれることが約40年前に予言されました。
しかし、その検証実験は技術的に難しく、現在に至るまで世界中の研究者の挑戦を跳ね返してきました。

東京大学大学院工学系研究科博士課程の高田真太郎大学院生(当時)、山本倫久講師、樽茶清悟教授らの研究グループは、独自に開発した2経路干渉計に量子ドットを埋め込んで、この位相の90度のずれを初めて実験的に確認しました。
その結果の明瞭さと重要さから、本成果は固体の電子物性分野の歴史的業績のひとつに位置づけられます。

本研究の成功の鍵となった2経路干渉計は、電子の散乱位相を高精度で検出できるものです。
今回、この干渉計の有用さが改めて実証されました。
また、同干渉計は、波動関数の位相を情報のリソースとする電子デバイスとなり得ることから、干渉を原理とする量子情報デバイスへの応用も期待されます。

本成果は、理化学研究所、Neel研究所(仏)、Ludwig-Maximilians大、Bochum Ruhr大(独)のグループとの共同研究によるものです。
____________

▽記事引用元
http://www.t.u-tokyo.ac.jp/epage/release/2014/20140922003.html
東京大学工学部(http://www.t.u-tokyo.ac.jp/epage/index.html)2014/09/22配信記事

<詳細リリース>
http://www.t.u-tokyo.ac.jp/pdf/2014/20140910_yamamoto.pdf

▽関連リンク
・Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer
Phys. Rev. Lett. 113, 126601 ? Published 15 September 2014
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.126601

※ご依頼いただきました。

引用元: 【物理】近藤状態によって散乱される電子波の位相のずれを初めて観測 40年前の予言を初めて実証/東京大など

近藤状態・・・40年前の予言を初めて実証の続きを読む

このページのトップヘ