理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

セル

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/08(火) 17:32:14.42 ID:CAP_USER
スマートフォンなどに内蔵されているフラッシュメモリには長い寿命が備わっているため、古くなって捨てられたデバイスからフラッシュメモリを外して「新品です」と偽って販売されるケースがあるとのこと。
この詐欺行為を簡単に暴くことができる技術が、アラバマ大学の研究チームによって開発されました。

That New Memory Smell: Tech Can Tell if Your Flash is New or Recycled - IEEE Spectrum
https://spectrum.ieee.org/tech-talk/semiconductors/memory/that-new-memory-smell-tech-can-tell-you-if-your-flash-is-new-or-recycled
https://i.gzn.jp/img/2018/05/08/tell-if-memory-is-recycled/00_m.jpg

この技術は、繰り返して使用されるごとに情報を記録する「セル」の不良が増加するというフラッシュメモリの特徴を利用したものです。
フラッシュメモリはセルの中にある「浮遊ゲート」に電子を出し入れすることで情報を記録し、読み出すという動作を行いますが、トンネル酸化膜と呼ばれる絶縁層に「格子欠陥」と呼ばれる不良箇所が増大し、劣化が進みます。
一度この層が劣化すると、このセルはもう二度と使うことができなくなります。

通常、フラッシュメモリを駆動する際には5ボルトの電圧が与えられますが、アラバマ大学のビスワジット・レイ准教授が率いる研究チームでは、プラス20ボルトとマイナス20ボルトの電圧をかけることで素子がリサイクル品であるかどうかを判定する仕組みを作り上げました。

続きはソースで

GIGAZINE
https://gigazine.net/news/20180508-tell-if-memory-is-recycled/
images


引用元: 【IT】フラッシュメモリが中古のリサイクル品かどうかを簡単に確認する手法が開発される[05/08]

フラッシュメモリが中古のリサイクル品かどうかを簡単に確認する手法が開発されるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/04/15(土) 01:47:50.48 ID:CAP_USER
神戸大学工学研究科電気電子工学専攻の喜多隆教授と朝日重雄特命助教らの研究グループは4月7日、波長の長い太陽光のスペクトル成分を吸収して変換効率を50%以上にまで引き上げることができる技術を開発したと発表した。

 従来の単接合太陽電池の変換効率の理論限界は30%程度であり、入射する太陽光エネルギーの大半が太陽電池セルに吸収されずに浸透するか、光子の余剰エネルギーが熱になるなどして利用されていない。太陽電池の変換効率が50%を超えると発電コストは大幅に下がり、2030年にわが国が目標とする発電コスト7円/kWhが実現できる。

続きはソースで

http://univ-journal.jp/13124/
images


引用元: 【電気】神戸大学、変換効率50%を超える新型太陽電池構造を開発©2ch.net

神戸大学、変換効率50%を超える新型太陽電池構造を開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/08/29(土) 21:59:38.26 ID:???.net
共同発表:せっけんの構造をまねて高分子太陽電池の高効率化に成功~色素を高濃度で導入し、限界効率打破に貢献~
http://www.jst.go.jp/pr/announce/20150828/

画像
http://www.jst.go.jp/pr/announce/20150828/icons/zu1.gif
図1 色素の表面エネルギーと偏在する位置
上) シリコンフタロシアニン色素(SiPc)と高分子媒体の表面エネルギー。表面エネルギーは、BuSiPc6(橙色)<RRa-P3HT(黄色)<SiPc6(赤色)<PS(水色)<SiPcBz(青色)の順に大きな値を示す。
下) RRa-P3HT/PSブレンド膜に各色素を導入した時に、色素が偏在する位置:BuSiPc6はRRa-P3HTドメイン(黄色)、SiPc6はP3HT/PS界面(赤色)、SiPcBzはPSドメイン(水色)に偏在している。
すなわち、表面エネルギーが最も小さいBuSiPc6は表面エネルギーの小さなRRa-P3HTドメインに、表面エネルギーが最も高いSiPcBzは表面エネルギーが大きいPSドメインに、中間の表面エネルギーのSiPc6はP3HT/PS界面に偏在することを示している。

http://www.jst.go.jp/pr/announce/20150828/icons/zu2.gif
図2 界面活性剤と今回開発した色素の類似点
左) せっけんのような界面活性剤は、水と親和性のある親水基と油分と親和性のある疎水基を持つことで、水と油分の界面に偏在する。
右) 今回新たに開発したSiPcBz6色素は、P3HTと親和性のあるヘキシル基とPCBMと親和性のあるベンジル基を軸配位子に持つ。界面活性剤と同様に、P3HTとPCBMの界面に偏在すると期待される。

http://www.jst.go.jp/pr/announce/20150828/icons/zu3.gif
図3 今回の研究で用いた近赤外色素
左2つは従来から用いられている、2つの同じ軸配位子を持つホ◯構造色素(SiPc6,SiPcBz)。右は今回新たに合成した、異なる軸配位子を持つヘテロ構造色素(SiPcBz6)。

http://www.jst.go.jp/pr/announce/20150828/icons/zu4.gif
図4 三元ブレンド高分子太陽電池の発電特性
上) 電流-電圧曲線:P3HT/PCBM二元ブレンド参照素子(黒)、P3HT/PCBM/SiPcBz(青色)、P3HT/PCBM/SiPc6(橙色)、P3HT/PCBM/SiPcBz6(赤色)三元ブレンド素子。ヘテロ構造色素を導入したP3HT/PCBM/SiPcBz6三元ブレンド素子(橙色)はP3HT/PCBM二元ブレンド参照素子に比べて、変換効率がおよそ3割向上している。
下) 外部量子収率スペクトル:P3HT/PCBM二元ブレンド参照素子(黒)、P3HT/PCBM/SiPcBz(青色)、P3HT/PCBM/SiPc6(橙色)、P3HT/PCBM/SiPcBz6(赤色)三元ブレンド素子。680nm付近の信号が色素由来の電流発生効率を表す。ホ◯構造色素(SiPcBz、SiPc6)に比べて、ヘテロ構造色素(SiPcBz6)の電流発生効率はほぼ倍増している。

http://www.jst.go.jp/pr/announce/20150828/icons/zu5.gif
図5 ヘテロ構造色素SiPcBz6の合成スキーム
メチルキャップした1官能性シリコンフタロシアニン(a)を出発原料とし、ヘキシル基を軸配位子として導入した後(b)、UV照射によりメチル基を脱離し(c)、ベンジル基を軸配位子として導入した(d)。

ポイント 
高分子太陽電池へ色素を導入することで、大幅な効率向上が期待されるが、色素の導入量には限界があった。
せっけんに似た構造の色素を開発し、高濃度導入に成功し、変換効率が約3割向上した。
今後、単セル素子で変換効率15%の実現が期待される。

JST 戦略的創造研究推進事業において、京都大学の大北 英生 准教授、伊藤 紳三郎 教授らの研究グループは、有機薄膜太陽電池の一種である高分子太陽電池に高濃度に導入できる近赤外色素を開発し、変換効率をおよそ3割(3.8→4.8%)向上させることに成功しました。

有機材料が吸収できる太陽光の波長幅は小さく限られていますが、可視光領域外の近赤外領域の太陽光を吸収できる色素(近赤外色素)を高分子太陽電池に高濃度で導入することで大幅な高効率化が期待できます。しかし、導入した近赤外色素が発電に寄与するには、ドナーである高分子材料とアクセプターであるフラーレンの界面に色素が存在する必要がありますが、色素を高濃度で導入すると、界面以外の領域に散在し、発電効率がかえって低下するという課題がありました。

大北准教授らは、せっけんの親水基と疎水基を同時に持つ構造をまねて、ドナー材料と親和性の高い軸配位子注1)とアクセプター材料と親和性の高い軸配位子を同時に持つヘテロ注2)構造の近赤外色素を開発しました。その結果、色素を重量比で従来の3倍導入することができ、変換効率もおよそ3割向上することに成功しました。

今回の研究成果により、次世代の太陽電池として注目されている高分子太陽電池の限界効率を引き上げることが可能であり、実用化の目安である変換効率15%をシンプルな構造の単セル素子注3)でも実現しうるアプローチとして期待されます。

本研究は、京都大学 大学院工学研究科の徐 華君 博士研究員、玉井 康成 博士研究員、辨天 宏明 助教、伊藤 紳三郎 教授と共同で行ったものです。

本研究成果は、2015年8月27日(英国時間)に独国科学誌「Advanced Materials」のオンライン速報版で公開されます。

続きはソースで

ダウンロード (1)
 

引用元: 【エネルギー技術】せっけんの構造をまねて高分子太陽電池の高効率化に成功 色素を高濃度で導入し、限界効率打破に貢献 京大など

せっけんの構造をまねて高分子太陽電池の高効率化に成功 色素を高濃度で導入し、限界効率打破に貢献 京大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/23(木) 12:44:42.03 ID:???.net
京大など、アンモニアを直接燃料とした燃料電池による発電に成功 | マイナビニュース
http://news.mynavi.jp/news/2015/07/23/130/
アンモニアを燃料とした燃料電池による発電 — 京都大学
http://www.kyoto-u.ac.jp/ja/research/research_results/2015/150722_2.html

画像
http://n.mynv.jp/news/2015/07/23/130/images/001l.jpg
開発したアンモニア燃料電池スタック
http://n.mynv.jp/news/2015/07/23/130/images/002l.jpg
直接アンモニア燃料電池は、電解質であるジルコニアの片面に取り付けた燃料極に発電の燃料となるアンモニアガスを直接供給し、反対側の空気極に空気を供給することによって、両極の間で電力を発生させる原理に基づいている。


概要

 アンモニアは炭素を含まず水素の割合が多い水素キャリアとして注目されていて、発電用燃料としての利用に期待が高まっています。その理由としてアンモニアを燃料として発電しても主に水と窒素しか排出しないことから、通常の化石燃料である炭化水素を利用した燃料電池に比較し、二酸化炭素排出量の削減効果が大きいことがあげられます。

 今回の技術はアンモニア燃料電池単セルを積層した200WクラスのSOFCスタックへ直接アンモニアを供給し、発電するものです。

続きはソースで

00


引用元: 【エネルギー技術】アンモニアを燃料とした燃料電池による発電 京大など

アンモニアを燃料とした燃料電池による発電 京大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/04/09(木) 00:53:47.92 ID:???.net
掲載日:2015年4月8日
http://jp.techcrunch.com/2015/04/08/20150407aluminum-ion/

▶ New aluminium-ion battery from Stanford - YouTube
https://www.youtube.com/watch?v=ZKIcYk7E9lU



 スタンフォード大学の科学者たちがこのほどプロトタイプを開発した、折り曲げられる電池は、アルミニウム製で素早く充電でき、寿命も長くて、リチウム電池より安全(揮発性の素材ではなく、セルに穴が開いても引火しない)と言われる。したがってそのアルミニウムイオン電池により、未来の消費者電子製品はより安全になり、早く充電でき、より薄くなるだけでなく折り曲げられるようにもなる。これらはとくに、ウェアラブルにとってありがたい特性だ。

 折り曲げられるリチウムイオン電池はすでに研究開発が進んでいるが、しかしアルミニウムはコストと安全性でリチウムより有利だ。そのため、研究者たちの関心も持続している。高性能で商用製品として完成したアルミニウムイオン電池はまだ先の課題だが、スタンフォードの研究者たちは、セルの正極にグラファイト(炭素素材)を使うと良いパフォーマンスが得られることを発見した。

 彼らの電池は7500回あまりの充電に、出力の損耗なく持ちこたえたが、ほかの研究室が作ったアルミ電池は約100回の充電で寿命が尽きた。彼らはNature誌に発表した記事の中で、“超高速のアルミニウムイオン電池が数千回あまりの充電に耐える安定性を示したのはこれが初めてだ”、と述べている。

 彼らがその電池に使用しているイオン性電解液は、室温では液状の塩である。その点でもこのプロトタイプのセルは安全で、現状ではポリマーでコーティングした柔軟性のある小袋に収められている。電池の電圧は2ボルトで、これもそのほかの研究者たちがアルミニウムで達成した電圧より高い。

続きはソースで

no title

<参照>
Aluminum battery from Stanford offers safe alternative to conventional batteries | Precourt Institute for Energy
https://energy.stanford.edu/news/aluminum-battery-stanford-offers-safe-alternative-conventional-batteries

An ultrafast rechargeable aluminium-ion battery : Nature : Nature Publishing Group
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14340.html

引用元: 【電気化学】スタンフォードの科学者たちが将来有望なアルミニウムイオン電池のプロトタイプを完成…リチウムを置換か

【すごい】スタンフォードの科学者たちが将来有望なアルミニウムイオン電池のプロトタイプを完成…リチウムを置換かの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2014/09/09(火) 23:34:38.38 ID:???.net
燃料電池のコスト削減を可能にする新技術が開発された。触媒として使われる白金の粒径と固体表面上に固定化(担持)する密度を減らす戦略で、燃料電池セルに用いる白金使用量をこれまでの10分の1に削減することに、九州大学カーボンニュートラル・エネルギー国際研究所/工学研究院の中嶋直敏(なかしま なおとし)教授、藤ヶ谷剛彦(ふじがや つよひこ)准教授らが成功した。9月5日の英オンライン科学誌サイエンティフィックリポーツに発表した。

燃料電池はクリーンでエネルギー効率が高く、コンパクトなため、車や家庭用電源への導入が徐々に進んできた。
しかし、触媒に使われる白金の価格が高過ぎて、燃料電池セルのコストの4分の1近くを占めて、価格を引き上げている。
普及には、この白金の使用量を減らし、コストを削減することが、差し迫った課題になっている。

白金が触媒として機能する際は、白金粒子の表面のみが利用される。同じ白金の量でできる限り大きな面積を作り出せればよい。
この戦略で、研究グループはまず、白金を有効活用する方法として、白金粒子の直径(粒径)を減らそうと考え、この白金微粒子を担持する独自の技術を考案した。

導電性のカーボンナノチューブに、ポリベンズイミダゾール(PBI)と呼ばれる接着剤をあらかじめ塗っておくと、白金微粒子を担持できた。この技術を「ナノ積層技術」と呼んだ。この新技術を利用して、仕込む白金の原料の添加量を減らしたところ、白金微粒子は大きく成長できず、小さくとどめることができた。

白金の粒径を小さくすると、表面が不安定化して互いに凝集しやすくなり、性能低下につながる恐れがある。
しかし、このナノ積層技術で白金は、しっかり吸着して分布が均一なため、微粒子同士の距離が離れていて、白金表面が有効に利用できた。実際の燃料電池で試験したところ、3.7nm(nmは10億分の1メートル)の粒径の白金と比較して、粒径が2.2nmの白金を使うと、同じ電圧で約10倍もの電流密度が得られた。
このデータは「白金の使用量を10分の1に減らしても、同等の性能になる」ことを意味しているという。

続きはソースで

http://scienceportal.jp/news/newsflash_review/newsflash/2014/09/20140908_02.html

サイレポ
Enhancement of Platinum Mass Activity on the Surface of Polymer-wrapped Carbon Nanotube-Based Fuel Cell Electrocatalysts
http://www.nature.com/srep/2014/140905/srep06295/full/srep06295.html

引用元: 【応用化学】固体高分子形燃料電池の白金使用量を10分の1に削減にすることに成功、九州大

燃料電池の白金使用量を10分の1に削減にすることに成功、九州大の続きを読む
スポンサーリンク

このページのトップヘ