理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

プロセス

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/06/05(月) 22:14:59.20 ID:CAP_USER
http://eetimes.jp/ee/articles/1706/05/news053.html

台湾・台北で開催された「COMPUTEX TAIPEI 2017」で、NVIDIAのCEOであるJensen Huang氏は、「ムーアの法則は終わった。マイクロプロセッサはもはや、かつてのようなレベルでの微細化は不可能だ」と、ムーアの法則の限界について言及した。
[Alan Patterson,EE Times]
2017年06月05日 11時30分 更新

「ムーアの法則は終わった」

 「ムーアの法則は終わった」。NVIDIAのCEO(最高経営責任者)を務めるJensen Huang氏は、アカデミック界で長年ささやかれてきた説について、大手半導体企業として恐らく初めて言及した。

 ムーアの法則は、Intelの共同設立者であるゴードン・ムーア氏が1965年に、「トランジスタの微細化は非常に速く進み、集積度は毎年倍増していく」と提唱したことから生まれた。ただし、微細化の速度は1975年に、「2年ごとに2倍になる」と変更された。

 Huang氏は、台湾・台北で開催された「COMPUTEX TAIPEI 2017」(2017年5月30日~6月3日)で、報道陣やアナリストに向けて、「スーパースカラーによるパイプラインの段数増加や投機的実行といったアーキテクチャの進化によって、ムーアの法則のペースは維持されてきた。だが現在は、そのペースが鈍化している」と語った。

 同氏は、「マイクロプロセッサはもはや、かつてのようなレベルでの微細化は不可能だ。半導体物理学では『デナード則』をこれ以上継続することはできない」と明言した。

http://image.itmedia.co.jp/ee/articles/1706/05/mm170605_moore.jpg

続きはソースで

【翻訳:滝本麻貴、編集:EE Times Japan】
原文へのリンク http://www.eetimes.com/document.asp?doc_id=1331836&
ダウンロード


引用元: 【ムーアの法則】「ムーアの法則は終わった」、NVIDIAのCEOが言及 [無断転載禁止]©2ch.net

【ムーアの法則】「ムーアの法則は終わった」、NVIDIAのCEOが言及の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/06/27(月) 17:59:35.52 ID:CAP_USER
産総研:1000 ℃付近の高温で使用できる高精度な温度計を開発
http://www.aist.go.jp/aist_j/press_release/pr2016/pr20160627/pr20160627.html


ポイント

•1000 ℃付近の高温域で高精度の温度測定が可能な白金抵抗温度計を開発
• 白金線の熱処理とセンサー構造を最適化することで実現
• 材料製造プロセスなど、高温域での温度測定・温度制御技術の向上に貢献


概要

 国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)物理計測標準研究部門【研究部門長 中村 安宏】温度標準研究グループ ウィディアトモ・ジャヌアリウス主任研究員と株式会社チノー【代表取締役社長 苅谷 嵩夫】(以下「チノー」という)は共同で、1000 ℃付近の高温域で高精度に温度測定ができる白金抵抗温度計を開発した。

 半導体の製造現場など、高精度な温度測定が必要な場合には、センサー部に白金線を用いた白金抵抗温度計が利用されている。しかし1000 ℃付近の高温域では白金線の抵抗値が不安定なうえに、高温によって白金線自体に熱ひずみが生じて抵抗値がより不安定になるため、精度の高い温度測定は困難であった。

 今回、産総研の国家標準(温度標準)を用いた熱サイクル試験などによって、センサー部の白金線を詳細に調べ、抵抗値を安定化させる作製条件を探した。その結果、センサーの作製過程で、白金線に適度な熱処理を加えると、1000 ℃付近の高温域でも抵抗値が安定することを見出した。さらに、高温で白金線に生じる熱ひずみを低減できるセンサー構造を新たに考案した。これらにより、高温域でも、0.001 ℃レベルの精度で温度測定できる新たな白金抵抗温度計を開発した。今後、材料プロセスなど高温域での高精度な温度測定・温度制御の実現が期待される。

 なお、この技術の詳細は2016年6月27日から7月1日までポーランドで開かれる国際学会TEMPMEKO 2016において発表される。

続きはソースで

ダウンロード (7)
 

引用元: 【計測工学】1000 ℃付近の高温で使用できる高精度な温度計を開発 高温域での温度測定・温度制御技術の向上に貢献 [無断転載禁止]©2ch.net

1000 ℃付近の高温で使用できる高精度な温度計を開発 高温域での温度測定・温度制御技術の向上に貢献の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/04/01(金) 18:01:55.48 ID:CAP_USER.net
【プレスリリース】レーザー照射するだけで簡単に 銅配線が形成できる技術を開発 - 日本の研究.com
https://research-er.jp/articles/view/45050


芝浦工業大学(東京都港区/学長 村上雅人)応用化学科の大石知司教授は、特定の銅錯体にレーザーを当てるだけで簡単に銅配線が形成でき、電子デバイスの製造プロセスを大幅に簡略化できる技術を開発しました。

酸化が進行してしまうために困難だった通常環境(大気中)での銅の処理を可能とし、数 10~200μm 幅の微小な配線形成ができるものです。近年、印刷技術を利用して集積回路やデバイスを作る技術(プリンタブルエレクトロニクス)が注目されています。その配線材料には低コスト・高導電性を持つ銅が多く使われています。しかし、銅は大気中での扱いが難しく、大がかりな真空設備や、複雑な作製プロセスを必要とし、結果的にコストや時間がかかる問題がありました。本技術では、特別な環境下や機器を用いることなく銅配線形成を可能にするもので、ディスプレイやスマートフォンなどを容易かつ低コストに生産する技術として期待されます。

続きはソースで

images (1)
 

引用元: 【技術】レーザー照射するだけで簡単に銅配線が形成できる技術を開発

レーザー照射するだけで簡単に銅配線が形成できる技術を開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/03/22(火) 22:09:09.96 ID:CAP_USER.net
【プレスリリース】工業材料で製作した熱化学法ISプロセス水素製造試験装置による水素製造に成功 ―実験室段階から高温ガス炉による水素製造の研究開発が前進― - 日本の研究.com
https://research-er.jp/articles/view/44630


発表のポイント

熱化学法ISプロセスの研究開発において、世界でも例の少ない、工業材料製の水素製造試験装置を用いた3反応工程の連結による水素製造試験に成功。

本試験の成功により、高温ガス炉へ接続する実用ISプロセスの完成に向けて大きく前進。

国立研究開発法人日本原子力研究開発機構(理事長 児玉敏雄、以下「原子力機構」という。)では、茨城県大洗町において、高温ガス炉1)の熱を利用するための熱化学法ISプロセスによる水からの水素製造技術の研究開発を実施しています。本プロセスは、将来950℃の高温の熱を供給できる高温ガス炉と組み合わせることで、炭酸ガスを排出することなく、大量の水素を高効率・低コストで製造するシステムを構築することが期待されます。

熱化学法ISプロセスは、ヨウ素(I)と硫黄(S)を用いた3つの化学反応を組み合わせて水を分解する化学プロセスであり、腐食性のある流体の温度・種類が異なる3反応工程(硫酸分解工程、ブンゼン反応工程、ヨウ化水素(HI)分解工程)で構成されます。工業化を見据え、実験室段階(反応器などをガラスで製作)に続く取り組みとして、3反応工程毎の環境に耐え得る工業材料(金属、セラミックス等)を用いて反応器を開発し、これらの反応器を3反応工程へそれぞれ組み込んだ世界最先端の装置を製作しました。この度、各反応工程別の機能確認に加え、世界でも例の少ない3反応工程を連結した水素製造試験装置の試運転に成功し、実用化に向けた研究開発が大きく前進しました。

今後、水素製造試験装置の試運転で明らかになったヨウ素の析出防止対策等の改良を行い、3反応工程を連結したより安定的な水素製造を目指します。本格的な試験により、運転制御性、長時間運転安定性、機器耐食性の確証など、水素製造システムの実用化に必要な研究開発を進めていく予定です。さらに、HTTR(高温工学試験研究炉)2)を用いて、世界で初めて原子力による水素製造を実証することを目標としています。

続きはソースで

no title
 

引用元: 【エネルギー技術】工業材料で製作した熱化学法ISプロセス水素製造試験装置による水素製造に成功

工業材料で製作した熱化学法ISプロセス水素製造試験装置による水素製造に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/03/16(水) 21:11:49.26 ID:CAP_USER.net
産総研:世界最高レベルのQ値を有する光ナノ共振器の大量作製に成功
http://www.aist.go.jp/aist_j/press_release/pr2016/pr20160316/pr20160316.html


研究成果のポイント

•工業生産に適したフォトリソグラフィ法を使用し、従来の100万倍のスピードで作製
• 世界最高レベルのQ値(注1)150万を達成、超高Q値光ナノ共振器の普及へ
• シリコンレーザーや光メモリー、簡便に使える医療診断センサーの開発等応用に期待


研究概要

 公立大学法人大阪府立大学(理事長:辻 洋)工学研究科の高橋和准教授と、国立研究開発法人産業技術総合研究所(理事長:中鉢 良治) 電子光技術研究部門の森雅彦研究部門長、岡野誠研究員の研究グループは、世界で初めて、工業生産に適したフォトリソグラフィ法を用いて、100万以上のQ値を有する光ナノ共振器を作製することに成功しました。

 シリコンフォトニック結晶(注2)を用いた光ナノ共振器(注3)は、100万を超える非常に高いQ値を実現しており、光を微小領域に強く閉じ込めることが可能です。
この特長を生かしたさまざまな光素子が研究されており、IoT時代を切り開くシリコンレーザー(注4)、光集積回路で重要となる光メモリー(注5)、どこでも簡便に使える医療診断センサー(注6)などが例として挙げられます。
とくに、近年開発され注目を集めている超低消費電力シリコンラマンレーザー(注7)は、100万以上のQ値を持つ光ナノ共振器が必要不可欠とされています。

 しかし、これまで実現してきたQ値100万以上の光ナノ共振器は全て、電子線リソグラフィ法により作製されたものでした。
産業応用を実現するには、半導体製造で一般的なフォトリソグラフィ法(電子線リソグラフィの100万倍の生産性を持つ)を用いて大面積ウエハー上に一括作製することが重要です。

 一般的に、光ナノ共振器は、非常に小さな空気孔(直径200ナノメートル程度)を周期的に配列した構造からなるため、リソグラフィに高い精度が要求されます。
また、リソグラフィ以外の作製工程でも多くの工夫が必要になります。
そのため、100万以上のQ値を実現することは、電子線リソグラフィ法を用いたとしても容易ではなく、微細パターン形成の精度が劣るとされるフォトリソグラフィ法と、柔軟性に欠ける半導体製造プロセスでは、Q値100万以上の光ナノ共振器を作製することは困難と考えられてきました(図1)。

 これまでに、大阪府立大学のグループは、電子線リソグラフィ法を用いて作製された世界最高レベルのQ値を有する光ナノ共振器を研究してきました。
一方、産業技術総合研究所(略称:産総研)は、フォトリソグラフィ法と半導体製造プロセスを用いたシリコンフォトニクス研究において、世界トップレベルのエンジニアリング技術を保有し、国内最大のシリコンフォトニクス研究拠点として、産業応用を積極的に推し進めてきました。
本研究は、基礎研究と応用研究で世界を牽引するグループが協力することで、初めて可能となりました。
両グループがそれぞれの知識、技術を持ち寄り、融合させることで、フォトリソグラフィ法と半導体製造プロセスを用いて高Q値光ナノ共振器を作製するための最適な方法が考え出されました。
それぞれの強みを生かして、主に、産総研がデバイス設計とサンプル作製を担当し、大阪府立大学がデバイスの特性評価を担当しました。

 サンプル作製は、産総研スーパークリーンルーム(略称:SCR)のシリコンデバイス一貫試作ラインを利用しました(図2)。
最先端のArF液浸フォトリソグラフィ法(注8)と、現場の技術者が有するプロセスノウハウを生かして、大面積30 cmシリコンウエハー全面に、光ナノ共振器を高い精度で作製しました(図3)。
その結果、予想を大きく上回る、150万のQ値を得ることに成功しました(図4)。今後、共振器構造と作製プロセスの最適化を進めることで、これ以上のQ値も十分期待できます。

 本研究成果を受けて研究グループでは、今後、オープンイノベーション推進拠点である産総研SCRにおいて、多くの研究者が高Q値光ナノ共振器を研究できる体制を整えていき、フォトニック結晶デバイスの早期実用化を推進していく予定です。
国内のフォトニクス研究者の連携を強化することで、フォトニック結晶、シリコンフォトニクス技術に基づく新たなフォトニクス産業の創出が期待されます。

 本成果は、平成28年3月22日、東京工業大学で開催される応用物理学会の注目講演として発表される予定です。

続きはソースで

images (1)

 

引用元: 【技術】世界最高レベルのQ値を有する光ナノ共振器の大量作製に成功 従来の100万倍のスピードで作製

世界最高レベルのQ値を有する光ナノ共振器の大量作製に成功 従来の100万倍のスピードで作製の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/01/22(金) 18:06:39.05 ID:CAP_USER.net
産総研:電気を通す透明ラップフィルムを開発
http://www.aist.go.jp/aist_j/press_release/pr2016/pr20160121/pr20160121.html


ポイント

•極細金属ワイヤを二枚の柔軟なフィルムの間に波状に配置する技術を開発
• 高伸縮性・透明性・電気的安定性・強靭性を同時に実現
• 曲面上へのセンサーの実装を可能にし、自由形状センサーの普及に貢献


概要

 国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)フレキシブルエレクトロニクス研究センター【研究センター長 鎌田 俊英】 印刷デバイスチーム吉田 学 研究チーム長、植村 聖 主任研究員、延島 大樹 産総研特別研究員は、トクセン工業株式会社【代表取締役社長 金井 宏彰】(以下「トクセン工業」という)と共同で、電気を通す透明ラップフィルムを開発した。

 産総研は、トクセン工業が開発した世界最小レベルの線径で、強度に優れ、弾性の高い極細金属ワイヤを二枚の柔軟なフィルムの間に波状に形成するプロセスを開発した。
このプロセスにより高伸縮性・透明性・電気的安定性・強靭性を同時に満たす導電性ラップフィルムを作製できる。
この透明ラップフィルムは、生鮮食品用のセンサー機能付きの包装フィルムや、あらゆる曲面上へのセンサーへの実装などに応用でき、自由形状センサー普及への貢献が期待される。

 なお、この技術の詳細は、2016年1月27~29日に東京ビッグサイト(東京都江東区)で開催されるプリンタブルエレクトロニクス2016で発表される。

続きはソースで

ダウンロード


引用元: 【技術/材料工学】電気を通す透明ラップフィルムを開発 生鮮食品の包装がセンサーに

電気を通す透明ラップフィルムを開発 生鮮食品の包装がセンサーにの続きを読む
スポンサーリンク

このページのトップヘ