理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

リチウムイオン

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/05/17(火) 12:00:27.38 ID:CAP_USER
東北大学(東北大)は5月16日、アモルファス一酸化シリコン(SiO)の構造解明に成功したと発表した。

同成果は、東北大 原子分子材料科学高等研究機構 平田秋彦准教授、陳明偉教授、物質・材料研究機構 小原真司主幹研究員、日産アークデバイス機能解析部 今井英人部長 研究グループ、科学技術振興機構および高輝度光科学研究センターらの研究グループによるもので、5月13日付の英国科学誌「Nature Communications」に掲載された。

SiOは、星間分子として宇宙に多量に存在することが知られている物質で、固化すると黒あるいは茶色のアモルファス固体となる。アモルファスSiOは、次世代電気自動車に搭載する高容量リチウムイオン二次電池の電極材料としても注目されている。その構造については、これまで下記のような3つの仮説が提案されてきているが、原子の並び方が乱れ、複雑に入り組んだナノスケール構造を持っていることから、その全貌の解明は極めて困難となっていた。

アモルファスSiOが均一構造であるという説(Siの隣が常に2つのSiと2つのO)SiとSiO2の混合物であるという不均一説(Siの隣が4つのSiである構造と4つのOである構造の混合物)不均一な混合物ではあるが、SiとSiO2以外の構造も含んでいるという説今回、同研究グループは、「オングストロームビーム電子回折」により得た、電子顕微鏡像で識別可能なアモルファスSiO中の2種類のナノスケール領域と、その境界からの電子線強度をそれぞれ平均して得たプロファイルと、「放射光高エネルギーX線散乱」により得た定量性の高い広い領域からの平均構造の両方を満たすような不均一構造モデルを、スーパーコンピューターを用いた計算機シミュレーションによって構築した。

続きはソースで

images
※画像はイメージで本文と関係ありません

http://news.mynavi.jp/news/2016/05/17/102/

得られた信頼性の高い構造モデルの中で見つかった原子環境の種類とその割合。アモルファスSiOには5種類のSiの原子環境が存在することがわかる。Si-4SiはアモルファスSi、Si-4OはアモルファスSiO2中に見られる原子環境であり、ほかの3種類はそれらの境界に存在する
http://news.mynavi.jp/photo/news/2016/05/17/102/images/001l.jpg

引用元: 東北大など、アモルファスSiOの構造解明 - 5種類のSiの原子環境が存在©2ch.net

東北大など、アモルファスSiOの構造解明 - 5種類のSiの原子環境が存在の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/03/30(水) 21:20:28.94 ID:CAP_USER.net
―RISINGプロジェクトの成果を学会発表―

2016年3月28日
国立研究開発法人新エネルギー・産業技術総合開発機構
国立大学法人京都大学

NEDOのプロジェクトにおいて、京都大学、産業技術総合研究所などの研究グループは、
リチウムイオン電池の性能限界を凌駕する新しいコンセプトの蓄電池(リザーバ型蓄電池)の開発に取り組み、従来不活性とされてきた電池系において充放電特性の向上等に成功し、500Wh/kgを見通す革新型蓄電池の基礎技術の構築に向けて大きく前進しました。

本研究グループは、2016年3月29日~31日に大阪で行われる電気化学会第83回大会において、この研究内容を発表します。

1.概要

プラグインハイブリッド自動車(PHEV)や電気自動車(EV)における走行距離を伸ばすため、従来のリチウムイオン電池(LIB)の性能を遥かに凌駕するエネルギー密度を有する革新型蓄電池の実現が待たれています。

LIB(図1)は、イオンを収納する入れ物(ホスト材料)の間でリチウムイオンをやり取りする(インサーション型蓄電池とする)ことで充放電を行うために、繰り返し充放電特性(サイクル特性)に優れるという利点がある一方で、ホスト材料の重量や体積が嵩むために、達成可能なエネルギー密度に限界があります。
この入れ物を廃して、金属そのものを電極として利用する新しいコンセプトの蓄電池(リザーバ型蓄電池)(図2)にすればエネルギー密度は大幅に向上しますが、電極材料によってはサイクル特性に大きな問題を抱えることになります。
特に、電極反応生成物が電解液に全く溶解せずに活性を示さない場合や、電解液に過剰溶解して散逸する場合は、サイクル特性が期待できず二次電池としては使用が困難でした。

そこで、NEDOのプロジェクト>>1において、京都大学、産業技術総合研究所などの研究グループは、電解液に電極の反応種が適度に溶解できる環境づくりに着目し、添加剤(アニオンレセプター)の導入、溶解性の高い電極材料の固定化、電極―電解質界面のナノレベルでの制御等を行った結果、種々の材料においてサイクル特性や充放電特性の向上等に成功しました。

今後は、出力特性、安全性等も含めて車載用蓄電池として要求される性能を更に高め、より早期に実用化に繋げていくことが期待されます。

なお、本研究グループは、2016年3月29日~31日に大阪で行われる電気化学会第83回大会において、この研究内容を発表します。

続きはソースで

ダウンロード


ソース元:NEDOプレスリリース
http://www.nedo.go.jp/news/press/AA5_100543.html


別ソース
http://www.asahi.com/articles/ASJ3X5RH3J3XPLBJ00C.html
実験レベルでは、電池性能を示すエネルギー密度が電池の重さ1キログラムあたり398ワット時を記録。
リチウムイオン電池の到達可能な最大値と考えられる同約300ワット時を超えたという。

参考(既スレあり)
リチウムイオン電池の3倍以上の出力特性をもつ全固体電池を開発
国立研究開発法人新エネルギー・産業技術総合開発機構
http://www.nedo.go.jp/news/press/AA5_100537.html

引用元: 【電気化学】リチウムイオン電池を凌駕する革新型蓄電池の基礎技術を構築

リチウムイオン電池を凌駕する革新型蓄電池の基礎技術を構築の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/03/02(水) 18:18:41.05 ID:CAP_USER.net
【プレスリリース】リチウムイオン電池からイオン制御可能な磁石の創出に成功 ―電気的にスイッチング可能な磁気デバイスの創出に貢献― - 日本の研究.com
https://research-er.jp/articles/view/43991


〈概要〉

 国立大学法人東北大学【総長 里見進】金属材料研究所【所長 高梨弘毅】の谷口耕治准教授、宮坂等教授らは、リチウムイオン電池*1に金属錯体から成る分子性材料を電極として組み込むことで、人工的にイオン制御可能な磁石を創り出すことに成功しました。
リチウムイオン電池のイオン挿入機能を介して、電極材料中の金属錯体と連結した非磁性の分子に電子を導入し磁気モーメント*2を付与することで、物質全体に磁石としての性質を発現させました。
さらに電池の放電状態を制御することで、磁気相転移温度*3を変化させることにも成功しています。

 本研究の結果は、本来は磁石ではない物質を、イオン挿入という電気的な手法で人工的に磁石に変え得ることを示した初めての例であり、新しい機能性磁石の設計指針を与えるものです。
また今後、リチウムイオン電池の可逆的な充放電機能を利用することで、電気的にスイッチング可能な磁気デバイスの創出につながることが期待されます。

 本研究成果はドイツ化学会誌「Angewandte Chemie International Edition」に受理され、近日公開される予定です。

続きはソースで

ダウンロード
 

引用元: 【材料科学/物性科学】リチウムイオン電池からイオン制御可能な磁石の創出に成功 電気的にスイッチング可能な磁気デバイスの創出に貢献

リチウムイオン電池からイオン制御可能な磁石の創出に成功 電気的にスイッチング可能な磁気デバイスの創出に貢献の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/01/20(水) 12:31:50.08 ID:CAP_USER.net
マグネシウム蓄電池 室温で使え世界初の実用化へ - 読んで見フォト - 産経フォト
http://www.sankei.com/photo/story/news/160119/sty1601190020-n1.html


 埼玉県産業技術総合センター(SAITEC)=埼玉県川口市=は19日、室温で安全に使用できるマグネシウムを使った蓄電池の開発に成功したと発表した。
スマートフォンなどの小型電子機器に使われているリチウムイオン電池より安全で容量が大きく、実用化すれば世界初となる。
同センターは埼玉県内企業と共同開発を進め、2、3年以内の製品化を目指す。.

 同センターによると、リチウムイオン電池は原料が高価で確保が難しく、空気に触れると発火するという課題がある。
これに代わる次世代蓄電池の開発が世界で進められる中、注目を集めたのが発火の危険性が低く、リチウムの25分の1程度の価格で資源も豊富なマグネシウムの蓄電池。
しかし、多くの研究機関が取り組んできたものの高温でしか動作しなかったり、数回の充電で劣化したりと小型の民生用機器への実用化には遠かったという。.

 同センターは埼玉県の先端産業創造プロジェクトの一環で、マグネシウム蓄電池の開発を推進。
今回の研究では、電池の正極に、酸化バナジウムに水などの添加物を使ってイオンの出入りをスムーズにする新材料を考案。
電解液に有機物を加えたことで室温でも作動し、繰り返し充電しても放電容量が劣化しづらい蓄電池開発が実現した。.

続きはソースで

ダウンロード


(川峯千尋)

引用元: 【技術】マグネシウム蓄電池 室温で使え世界初の実用化へ

マグネシウム蓄電池 室温で使え世界初の実用化への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/01/19(火) 07:15:00.29 ID:CAP_USER.net
発火しないリチウムイオン電池の開発に成功 | ナショナルジオグラフィック日本版サイト
http://natgeo.nikkeibp.co.jp/atcl/news/16/011800016/


「ホバーボード」と呼ばれるセルフバランススクーターがこのところ大人気だ。体重移動だけで自由にコントロールできる小型の乗り物はさぞ楽しいだろう。
だが、乗っている間に発火する事故が相次いでいるため、一部の大学や航空会社では持ち込みが禁止されている。
事故をご存じなければ「ホバーボード」に「炎上」「発火」「爆発」などのワードを加えて検索してみるといい。(参考記事:「人体自然発火事件の謎」)

 発火の原因はリチウムイオン電池だ。リチウムイオン電池はさまざまな家電に使われているが、これまでにも電気自動車や貨物飛行機などで火災を起こして問題になってきた。
カメラ、ノートパソコン、タブレット、コードレス機器、そして、冬物の電熱ジャケットにも使われたリチウムイオン電池に過熱のおそれがあるとして、企業や米国政府が実施したリコールは数千件にのぼる。

 今回、この問題が解決される希望が出てきた。
米スタンフォード大学の研究チームが「Nature Energy」2016年1月11日号に発表した論文で、過熱する前にシャットダウンし、温度が下がったら速やかに再始動するリチウムイオン電池を初めて開発したと報告したのだ。

 論文の共著者である化学工学教授のゼナン・バオ氏は、開発に使った材料のほとんどは安価なプラスチックやニッケルであるため、大量生産の可能性は非常に高いと考えている。
なお、再始動後も充電池の効率は低下しないという。

 より優れた、より安価な充電池への需要は高まるばかりで、世界中の研究者が新しい充電池の開発にしのぎを削っている。
研究者たちは、フロー電池など新しい原理にもとづく充電池の研究を進める一方で、リチウムイオン充電池の効率を高めたり、発火のおそれを小さくしたりする方法も模索している。
(参考記事:「画期的な蓄電池を開発、住宅用にも 米ハーバード大」)

 例えば、米マサチューセッツ工科大学の研究チームは、リチウムイオン電池の電解質(正極と負極の間で電気を帯びた粒子を運ぶ物質)を液体ではなく固体にすることで、安全性を高められるとする研究成果を発表している。
また、電解質に難燃材を加えて発火しにくくする方法も研究されている。去年には、スタンフォード大学の工学者イー・ツィ氏が、過熱する前に警告を出す「スマート」充電池を開発している。

 今回の論文の共著者でもあるツィ氏は、「ただし残念ながら、これまでの技術は不可逆的で、いちど過熱状態になった充電池は二度と使えなくなってしまうのです」と説明する。

続きはソースで

ダウンロード
 

引用元: 【技術】発火しないリチウムイオン電池の開発に成功 過熱前にシャットダウンし、温度低下で再始動、米スタンフォード大

発火しないリチウムイオン電池の開発に成功 過熱前にシャットダウンし、温度低下で再始動、米スタンフォード大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/12/05(土) 23:57:39.40 ID:CAP_USER*.net
性能はリチウムイオン電池の6倍、マグネシウム“硫黄”二次電池を開発 山口大学
http://www.itmedia.co.jp/smartjapan/articles/1512/04/news039.html

ダウンロード


 山口大学 大学院理工学研究科の研究チームは、既存のリチウムイオン二次電池の代替として期待される高容量なマグネシウム二次電池の開発に成功したと発表した。

 二次電池はエネルギーを発生させる燃料の役割を果たす正極材料(プラス極)と負極材(マイナス極)、さらに電極間エネルギーの媒体となる電解質の3つの要素で構成されている。

現在、一般的に使われている携帯電話などの二次電池には、主に正極材料にコバルト系化合物、負極材料に人造黒鉛(炭)、電解質にはリチウムイオンを使用した有機電解液が使用されている。
しかし、コバルトやリチウムは希少金属であるため、製造コストが高くなるなど、さらなる普及に向けた課題も残っていた。

続きはソースで 

引用元: 【社会】性能はリチウムイオン電池の6倍、マグネシウム“硫黄”二次電池を開発 山口大学

性能はリチウムイオン電池の6倍、マグネシウム“硫黄”二次電池を開発 山口大学の続きを読む
スポンサーリンク

このページのトップヘ