理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

中性子

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/15(水) 07:55:11.67 ID:???.net
【やじうまPC Watch】CERN、5つのクォークで構成される「ペンタクォーク」粒子を発見 - PC Watch
http://pc.watch.impress.co.jp/docs/news/yajiuma/20150715_711744.html

画像
http://pc.watch.impress.co.jp/img/pcw/docs/711/744/01.png
今回発見されたペンタクォークの予測される構造の1つ。5つのクォークが強く結びついてる
http://pc.watch.impress.co.jp/img/pcw/docs/711/744/02.png
あるいは、バリオンと中間子が弱く結びついている可能性もある


 近頃、質量の起源とされ「神の粒子」とも呼ばれるヒッグス粒子の発見で一般にも広く脚光を浴びた欧州原子核研究機構(CERN)はスイス時間の14日、5つのクォークで構成される「ペンタクォーク」を発見したと発表した。

 古代、原子は物質の最小構成要素である素粒子と考えられていたが、実際には電子と原子核という内部構造を持ち、さらに原子核は陽子と中性子という内部構造を持つ。これら陽子と中性子も素粒子ではなく、3つのクォークで構成(バリオンと呼ばれる)されており、現在は、このクォークが素粒子だと考えられている。

 クォークで構成される粒子としては、2つのクォークからなる中間子という粒子の存在が確認されているが、4つや5つのクォークで構成される粒子はまだ見つかっていない。今回CERNは、大型ハドロン衝突型加速器「LHCb」を用いた大規模な実験結果から、5つのクォークで構成されるペンタクォーク粒子の存在を確認したと結論づけた。

続きはソースで

ダウンロード

引用元: 【素粒子物理学】CERN、5つのクォークで構成される「ペンタクォーク」粒子を発見

CERN、5つのクォークで構成される「ペンタクォーク」粒子を発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/06/11(木) 01:04:06.44 ID:???.net
東京大学大学院の片岡一則教授らの研究チームは、ウイルスほどの大きさのナノマシンと中性子を使い、がんを攻撃する技術を開発したと発表した。

片岡教授らが研究を行っている「ナノマシン」は、必要な量の薬などをウイルスほどの大きさのカプセル状にして、病気の患部に直接届け、作用させるもの。研究チームはマウスを用いた実験で、造影剤を搭載したナノマシンを体内に投与し、MRIでがんの部位を特定。
そこに熱中性子線を照射することによってがんを攻撃することに成功したという。

続きはソースで

ダウンロード



http://www.news24.jp/articles/2015/06/11/07277046.html

引用元: 【医療】ナノマシンと中性子を使って、がんを攻撃する技術を開発 東大、5年後の実用化めざす

【すごい!】ナノマシンと中性子を使って、がんを攻撃する技術を開発 東大、5年後の実用化めざすの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/05/13(水) 22:01:35.32 ID:???.net
重元素合成の鍵を握る中性子過剰核110個の寿命測定に成功 | 理化学研究所
http://www.riken.jp/pr/press/2015/20150512_1/

画像
http://www.riken.jp/~/media/riken/pr/press/2015/20150512_1/fig1.jpg
図1 太陽系の元素存在比
(a)はr過程に起因する太陽系の鉄より重い元素の存在比を示す。第1、2、3ピークと希土類元素のピーク構造を持つことが分かる。緑線は従来の原子核理論を、赤線はRIBF新データを取り込んだ元素存在比。
http://www.riken.jp/~/media/riken/pr/press/2015/20150512_1/fig2.jpg
図2 実験装置の全体像
http://www.riken.jp/~/media/riken/pr/press/2015/20150512_1/fig3.jpg
図3 生成したRIの粒子識別結果
色は粒子の強度を示す。赤丸は今回初めて寿命(半減期)測定に成功した原子核。
http://www.riken.jp/~/media/riken/pr/press/2015/20150512_1/fig4.jpg
図4 ルビジウムからスズまでの半減期の中性子数依存性
http://www.riken.jp/~/media/riken/pr/press/2015/20150512_1/fig5.jpg
図5 太陽系、金属欠乏星、および最新の寿命データを取り込んだ元素存在比スペクトル
超新星爆発の膨張時間の条件を変更しても、原子番号Z=64以上の希土類元素とテルル(Te)、キセノン(Xe)、バリウム(Ba)の生成量は安定しており、重元素存在比の普遍性が成り立っている。一方、スズ(Sn)、アンチモン(Sb)、ヨウ素(I)、セシウム(Cs)は普遍性が破れている。


要旨

理化学研究所(理研)仁科加速器研究センター櫻井RI物理研究室のジュセッペ・ロルッソ客員研究員、西村俊二先任研究員、櫻井博儀主任研究員らの研究チーム※を中心とするEURICA(ユーリカ)国際共同研究グループ[1]は、理研の重イオン加速器施設「RIビームファクトリー(RIBF)」[2]を利用し、質量数A=100~140の中性子過剰核110個の寿命測定に成功しました。

自然界には、原子番号1の水素(H)から92のウラン(U)までの元素が安定して存在しています。鉄(Fe:原子番号26)より重い元素のうち約半数は、超新星爆発が起こり温度と密度が非常に高い環境になったときに合成されたと考えられています。そこでは、原子核が周辺を飛び交う大量の中性子をどんどん吸収して中性子過剰な原子核(放射性同位元素(RI)[3])になり、ベータ線を放出するベータ崩壊により中性子が陽子に変換されることにより一挙に金(Au:原子番号79)やウランを含む重元素[4]が生成されたとされています。

この過程は、高速(rapid)に連続して中性子を捕獲しながらベータ崩壊するため「r過程[5]」と呼ばれています。しかし、超新星爆発ではなく、中性子星同士の融合の際にr過程が起こったという説もあり、r過程は未だに多くの謎に包まれています。

r過程の時間スケールや重元素の生成量を理解するためには、原子核の寿命が重要です。しかし、r過程で生成される中性子過剰な原子核を人工的に作り寿命を測定しようとしても、生成率が非常に低いため、実際に測定するのは困難でした。今回、研究チームは世界最高性能を誇るRIBFを利用して、r過程に関わる中性子過剰な原子核を生成し、寿命測定を試みました。まず、大強度のウランビームをベリリウム(Be:原子番号4)標的に照射し、ルビジウム(Rb:原子番号37)からスズ(Sn:原子番号50)までの中性子過剰な原子核RIを生成しました。そして、それらを高性能寿命測定装置「WAS3ABi(ワサビ)」 [6]に打ち込むことにより、中性子魔法数[7]82近傍の110個のRIの寿命を測定することに成功しました。

この成果は、今後の原子核研究、天体観測における重元素合成の謎の解明において重要な手がかりを与えると期待できます。本研究は、米国の科学雑誌『Physical Review Letters』オンライン版(5月11日付け)に掲載されました。

続きはソースで

1

 

引用元: 【原子核物理学/宇宙論】重元素合成(r過程)の鍵を握る中性子過剰核110個の寿命測定に成功 理研

重元素合成(r過程)の鍵を握る中性子過剰核110個の寿命測定に成功 理研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
2: 2015/02/21(土) 08:04:06.87 ID:6IFIeKsN.net
<翻訳>
(訳:素人訳なので識者の方の訂正を求めますm(_ _)m)

下記にソース(英文)あり

CERNのCOMPASSの科学者の連係によるパイオンの分極率のこれまで生み出した中で最も正確な測定
―強力な相互作用の基本的な低エネルギーパラメータ

画像
電子(緑)は核内で陽子を打ち、パイオン(緑色の皮相の粒子)を作成し、陽子を中性子に変換する。
画像のクレジット: Joanna Griffin / Jefferson Lab.
http://cdn4.sci-news.com/images/2015/02/image_2499-Pion.jpg

 私たちが宇宙の中で見るすべてはクォークとレプトンと呼ばれる素粒子で構成されています。

 クォークは、元素の原子核の構成要素(陽子と中性子)を構成するために3つのグループで一緒に結合されている。

 原子核内の陽子と中性子の間で飛び交うパイオンは、強力な力を媒介し原子核同士を結合させる。

 この測定はパイオンの変形能、または分極率、クォーク間の強い結合力を直接測定する。

 新しい測定結果は、journal Physical Review Lettersに掲載される、それは理論と密接に一致している。

 パイオンの分極率を測定するために、COMPASS(スイス、ジュネーブCERNのSuper Proton Syncrotronによる高エネルギー物理実験)の科学者は対象のニッケルにビームを撃った。

 パイオンは平均的にニッケルに対して粒子自体の半径の2倍の距離接近した。彼らはニッケル核子の非常に強い電界を経験した。この電界は、それらを変形させ光子を放出する過程で軌道を変化させる。

 63,000もの大規模な事象サンプルのために光子エネルギーとパイオンの偏差を測定することにより、COMPASSチームはパイオンの電子分極率を απ = (2.0±0.6stat±0.7syst)*10-4 fm3 と決定した。

 「この実験結果は見事にLHCで行われる基本的な相互作用の研究とCERNの研究プログラムが多様性と強度の証であることを相補する」と、CERN局長ロルフ・ホイヤーは語った。


0 (1)


1: 2015/02/21(土) 08:03:40.04 ID:???.net
掲載日:2015年2月16日
http://www.sci-news.com/physics/science-cern-polarizability-pion-02499.html

Scientists from CERN’s COMPASS collaboration have made the most precise measurement ever of the
polarizability of pion – the fundamental low-energy parameter of strong interaction.

An electron (green) hits a proton in a nucleus, creating a pion (green-skinned particle) and
transforming the proton into a neutron. Image credit: Joanna Griffin / Jefferson Lab
http://cdn4.sci-news.com/images/2015/02/image_2499-Pion.jpg

Everything we see in the Universe is made up of fundamental particles called quarks and leptons.

Quarks are bound together in groups of three to make up the building blocks of the nuclei of elements
– protons and neutrons.

Flitting between the protons and neutrons in a nucleus are pions, which mediate the strong force binding
the nucleus together. These particles are made up of a quark and an antiquark, themselves held tightly bound
by the strong force.

This makes their deformability, or polarizability, a direct measure of the strong binding force between the quarks.

The polarizability of pions has baffled particle physicists since the 1980s, when the first measurements appeared to
be at odds with the theory.

The new result, appearing in the journal Physical Review Letters, is in close agreement with theory.

To measure pion’s polarizability, scientists from COMPASS – a high-energy physics experiment at the
Super Proton Synchrotron at CERN in Geneva, Switzerland – shot a beam of pions at a target of nickel.

As the pions approached the nickel on average at distances twice the radius of the particles themselves,
they experienced the very strong electric field of the nickel nucleus, which caused them to deform, and
change trajectory, in the process emitting a photon.

By measuring the photon energy and the deflection of the pion for a large sample of 63,000 events,
the COMPASS team determined the pion electric polarizability to be απ = (2.0±0.6stat±0.7syst)*10-4 fm3.

“This result is admirably complementary to the studies of fundamental interactions performed at
the Large Hadron Collider and a testimony to the diversity and strength of CERN’s research programme,”
said Rolf Heuer, Director General of CERN.

<参照>
COMPASS pinpoints polarisability of pions | CERN
http://home.web.cern.ch/scientists/updates/2015/02/compass-pinpoints-polarisability-pions

Phys. Rev. Lett. 114, 062002 (2015) - Measurement of the Charged-Pion Polarizability
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.062002

引用元: 【素粒子物理】CERNの物理学者によるパイオン分極率の測定

CERNの物理学者によるパイオン分極率の測定の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2014/11/27(木) 23:21:56.61 ID:???.net
驚異の素材グラフェンに陽子透過性、燃料電池に応用期待 研究
http://www.afpbb.com/articles/-/3032887
AFP 2014年11月27日 17:36 発信地:パリ/フランス


【11月27日 AFP】世界最薄だが超強力な驚異の素材「グラフェン(Graphene)」の不浸透性に極小の抜け穴を発見したとの研究論文が26日、英科学誌ネイチャー(Nature)に掲載された。

グラフェンに関する研究で2010年にノーベル物理学賞を受賞した物理学者、アンドレ・ガイム(Andre Geim)氏率いる研究チームは、あらゆる種類の気体や液体を通さないことで知られるグラフェンが、プロトン(陽子)と呼ばれる粒子を通過させる様子を見て驚いたと話している。

研究チームはこの予想外の発見を、従来型電池に代わる無公害の燃料電池開発への突破口になる可能性を秘めたものと称賛。小さな抜け穴だが極めて重大な発見と位置づけている。

今回の研究に参加した英マンチェスター大学(University of Manchester)は、「燃料電池などの水素を基にした技術には、水素原子から電子が離れた陽子のみを通過させる障壁物質が不可欠なので、今回の発見は同技術に革命をもたらすかもしれない」と声明で述べている。陽子は中性子とともに、物質の基本構成要素である原子の原子核を構成している。

人毛より何倍も薄く、わずか原子1個分の厚みしかないグラフェンは、鋼鉄より強く、最小原子の水素に対しても障壁として機能するため、不浸透性の被覆材や包装材に最適の材料となる。

続きはソースで


原論文:
Proton transport through one-atom-thick crystals : Nature : Nature Publishing Group
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14015.html

引用元: 【物理】驚異の素材グラフェンに陽子透過性、燃料電池に応用期待 [11/27]

驚異の素材グラフェンに陽子透過性、燃料電池に応用期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2014/10/01(水) 00:46:06.49 ID:???.net
鉄に溶けた水素はどこにいる? -鉄中の水素を中性子で観測することに成功-
2014年9月29日 09:00

独立行政法人日本原子力研究開発機構量子ビーム応用研究センター、J-PARCセンター及び国立大学法人東北大学金属材料研究所は、同大学原子分子材料科学高等研究機構、学校法人中央大学理工学部及び国立大学法人愛媛大学地球深部ダイナミクス研究センターとの共同研究により、高温高圧力下において鉄中に高濃度に溶けた水素の位置や量を観測することに世界で初めて成功しました。

水素は鉄などの金属中へある温度、圧力条件で溶け込みます。
溶けた水素は例えば材料強度を弱めるといった機械的な特性変化(水素脆性)を引き起こしますが、その現象の理解には、水素がどこにどのくらい存在するのか、という情報が重要になります。
鉄中に水素は数万気圧という高圧力下でしか高濃度に溶け込むことができません。
材料中の水素を観測する方法は限られ、また高温高圧力下での測定は技術的に困難でしたので、これまで実験的に観測できませんでした。
今回、水素を観測することができるJ-PARCの大強度中性子線を利用して、高温高圧力下の鉄中に高濃度に溶けた水素の位置や量を、実験的に決定することに成功しました。

これまで、面心立方構造の鉄中においては、鉄原子が作る八面体サイト(隙間)の内部のみに水素が存在すると考えられていましたが、高温高圧力下における中性子回折実験により八面体サイトに加えて鉄原子の作る四面体サイトの内部にも水素が存在することを世界で初めて明らかにしました。

本研究の成果によって、鉄中に溶けた水素に関係する特性の変化に対する理解がより一層進むと期待されます。
また各種鉄鋼材料の高品質化・高強度化に向けた研究開発や、地球内部のコア(核)に存在する鉄の研究などの進展にも役立つと期待されています。
_________

▽記事引用元
https://www.tohoku.ac.jp/japanese/2014/09/press20140926-03.html
東北大学(https://www.tohoku.ac.jp/japanese/)2014年9月29日 09:00 配信記事

詳細(プレスリリース本文)
https://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press_20140926_03web.pdf

引用元: 【物理】鉄に溶けた水素はどこにいる?鉄中の水素を中性子で観測することに成功/東北大 

鉄に溶けた水素はどこにいる?鉄中の水素を中性子で観測することに成功/東北大 の続きを読む

このページのトップヘ