理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

伝導

    このエントリーをはてなブックマークに追加 mixiチェック
1: 常世非時香果φ ★ 2013/07/23(火) 21:01:19.93 ID:???

銅の100倍まで電流を流せるカーボンナノチューブ銅複合材料
-今後のデバイス小型化・高性能化に対応できる配線材料のブレークスルー-

ポイント
・銅と同程度の電気伝導度をもちながら、これまでにない電流容量を達成
・227 ℃での電気伝導度は銅の約2倍であり、温度上昇による電気伝導度の低下が小さい
・密度が小さいため、デバイスの軽量化が図れる

 独立行政法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)
ナノチューブ応用研究センター【研究センター長 飯島 澄男】畠 賢治 首席研究員、CNT用途開発チーム 山田 健郎 研究チーム長、技術研究組合 単層CNT融合新材料研究開発機構【理事長 古河 直純】(以下「TASC」という)チャンドラモウリ スブラマニアン 研究員らは、単層カーボンナノチューブ(単層CNT)と銅を用いて、銅と同程度の電気伝導度をもちながら、銅の100倍まで電流を流せる複合材料を開発した。

 社会に広く利用されている電子デバイスの電力は、銅や金などの配線によって供給されている。
配線に流せる電流は配線の素材と太さによって決まるが、デバイスの小型化が進む中で、これまでの材料の配線では流せる電流量が限界に近づいてきている。

 今回、銅イオンの有機系溶液および水溶液を用いた電気めっき法により、スーパーグロース法で合成した単層CNTと銅を複合化させて、配線用のCNT銅複合材料を作製した。この複合材料は軽量で、これまでにない高い電気伝導度と大きな電流容量をもつ。さらに高温でも優れた電気伝導度を保てる。
このような性質から、今後のデバイスの小型化・高性能化に対応できる配線材料として期待される。

 今回の研究開発は独立行政法人 新エネルギー・産業技術総合開発機構(以下「NEDO」という)の「低炭素化社会を実現する革新的カーボンナノチューブ複合材料開発プロジェクト」(平成22~26年度、プロジェクトリーダー 産総研 湯村 守雄)において行った。

 この研究の詳細は、英国の学術誌「Nature Communications」に2013年7月23日18時
(日本時間)に掲載される。

(詳細はソース内をご覧ください。)
http://www.aist.go.jp/aist_j/press_release/pr2013/pr20130723_2/pr20130723_2.html
13

http://www.aist.go.jp/aist_j/press_release/pr2013/pr20130723_2/photo.jpg



【技術】産総研、銅の100倍まで電流を流せるカーボンナノチューブ銅複合材料を開発したと発表の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 依頼35-133@pureφ ★ 2013/06/09(日) 17:25:18.06 ID:???

超伝導体で挟んだ強磁性体中を長距離流れるスピン流の原理を発見
-発熱がなく超低消費電力で動作する次世代スピントロニクスデバイスへ道筋-
3

http://www.riken.go.jp/~/media/riken/pr/press/2013/20130529_1/digest.jpg
超伝導/強磁性接合におけるクーパー対の波動関数の空間変化の概念図(左)とスピン流(実線)とジョセフソン電流(破線)の強磁性体の膜厚依存性(右)

スピンが注目されています。といってもテニスのトップスピンやフィギュアスケートのスピンではありません。電子が持っている角運動量のことで、磁気の起源でもありますが、なかなか頭の中にスッと入らず、ピンとこないですね。
厳密に言うと正確ではないですが、電子の自転をスピンと考えればどうでしょう。それは、ちょうどフィギュアスケートでいうスピンのような運動を電子がしていると想像できてピンとくると思います。ここでは、電子の自転運動をスピンと考えて下さい。

ちなみに、一定方向へ電荷が輸送されると電流になります。一方、スピンが輸送されるとスピン流となります。スピン流は電荷の流れを伴わないでスピンを輸送するために熱を発生しないという特徴があって、低消費電力で動作可能なデバイスの開発につながると期待されています。しかし、スピン流は電流とは違って、遠くまで輸送する事が難しいという問題点があります。そのために、現在、デバイス実現に向けて、スピンを効率良く遠くまで輸送(伝搬)する理論の構築や実験が活発化しています。

理研の研究チームは「どこまでスピン流を長距離輸送できるか」に挑戦しました。磁化の方向が異なる2層の強磁性体を、冷却すると電気抵抗がゼロになる超伝導体で挟んだ「強磁性ジョセフソン接合」を想定し、強磁性ジョセフソン接合の中を流れるスピン流を、数式で理論的に解き明かそうとしました。その結果、スピン流は電圧降下することなく、数十ナノメートルから数百ナノメートルにわたって強磁性体中を伝搬することが証明できました。

これまでのスピン流の伝搬距離は10ナノメートル以下でしたので、数百倍も距離が伸びたことになります。この長距離伝搬は、近接効果により強磁性体に誘起された「スピン三重項クーパー対」によって可能となったことを明らかにしました。近接効果とは、超伝導体と超伝導体にならない物質を結合すると、クーパー対が超伝導体にならない物質に侵入して、その物質が超伝導性を示すことです。

今回考案した強磁性ジョセフソン接合では、電流(今回の場合はジョセフソン電流)がゼロになるにもかかわらず、スピン流の減衰は1桁程度にとどまり、十分に観測可能な値であることも分かりました。この結果は、スピン三重項クーパー対によってスピン流と電流を分離できることを示しています。このクーパー対のスピン流と電流の分離は、物性物理学上の新しい現象であり、研究の新しいステージを提供すると期待できます。また、近接効果によって強磁性体中にスピン三重項クーパー対が誘起されることを、実験的に証明できるデバイスの作製にもつながります。

独立行政法人理化学研究所60秒でわかるプレスリリース 2013年5月29日
http://www.riken.go.jp/pr/press/2013/20130529_1/digest/
報道発表資料
http://www.riken.go.jp/pr/press/2013/20130529_1/

Long-Range Spin Current Driven by Superconducting Phase Difference in a Josephson Junction with Double Layer Ferromagnets
S. Hikino and S. Yunoki
Phys. Rev. Lett. 110, 237003 (2013)
http://prl.aps.org/abstract/PRL/v110/i23/e237003

関連ニュース
【物理】磁気の流れを介した新しい磁気抵抗効果を発見-磁性体に電流を流さずに磁気情報を電気的に読み取る新機能電子デバイス開発に道
http://anago.2ch.net/test/read.cgi/scienceplus/1368927772/
【物理】超伝導転移温度の高さと電子対の強さをつなぐ法則を発見 回転する電子対による超伝導の核心部分に光明
http://anago.2ch.net/test/read.cgi/scienceplus/1369010926/-100
【物理】東北大学とNTT、磁場を使わず電子スピンの向きを任意に変える世界初の発見 画像あり
http://anago.2ch.net/test/read.cgi/scienceplus/1363682179/-100
【半導体】スピン軌道相互作用利用の超省エネ電子デバイスの実現へ新技術/北陸先端大
http://anago.2ch.net/test/read.cgi/scienceplus/1354804296/-100
【化学】東北大、電子スピン永久旋回状態の電気的制御に成功 画像あり
http://anago.2ch.net/test/read.cgi/scienceplus/1347365887/-100



【物理】強磁性ジョセフソン接合に誘起されたスピン三重項クーパー対によりスピン流が強磁性体中を長距離伝搬の続きを読む

このページのトップヘ