理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

分解

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/11/27(金) 18:15:49.50 ID:CAP_USER.net
鳥嶋真也  [2015/11/26]
米戦略軍の統合宇宙運用センター(JSpOC)は11月25日(現地時間)、米海洋気象庁(NOAA)の気象衛星「NOAA-16」が軌道上で分解したと発表した。
詳しい状況はまだ不明だが、スペース・デブリ(宇宙ゴミ)が発生したことが確認されている。

ダウンロード


JSpOCによると、分解したのは日本時間11月25日17時16分(協定世界時同日8時16分)とされる。
JSpOCは世界各地に設けられたレーダーや望遠鏡で、地球の周回軌道上にある大小さまざまな物体の監視を行っている。

現時点で、分解の原因は明らかになっていない。考えられる原因として、他の人工衛星やデブリとの衝突や、衛星内の燃料やバッテリーの爆発などが挙げられる。

また、発生したデブリの数や軌道も明らかになっていないが、26日朝の段階でJSpOCは
「現時点では、NOAA-16の破片が他の衛星に危険を及ぼすことはない」と発表している。

ただ、NOAA-16が周回していた高度約850km、軌道傾斜角98度の太陽同期軌道は、地球の大気がほとんどないため、デブリの軌道にもよるが、おおむね年単位で軌道に留まり続けることになると見られる。また、摂動などの影響で軌道も変わるため、いずれ他の衛星などと衝突する可能性がないわけではない。

NOAA-16はロッキード・マーティンが開発した気象衛星で、2000年に打ち上げられた。設計寿命は2年とされていたが、その予定をはるかに超えて運用が続けられ、2005年には同じ年の5月に打ち上げられた「NOAA-18」に気象観測ミッションを引き継ぎ、以降は予備機として運用されていた。しかし、2014年6月5日に衛星が故障し、復旧の見込みが立たなかったため、6月9日に運用を終了していた。

続きはソースで

画像
http://n.mynv.jp/news/2015/11/26/478/images/001l.jpg
NOAA-16の想像図 (C)NOAA
http://n.mynv.jp/news/2015/11/26/478/images/002l.jpg
打ち上げ前のNOAA-16 (C)NASA

http://news.mynavi.jp/news/2015/11/26/478/?rt=top

参考
・Space-Track.Org
 https://www.space-track.org/
・JSpOC(@JointSpaceOps)さん | Twitter
 https://twitter.com/JointSpaceOps
・POES
 http://poes.gsfc.nasa.gov/noaa-heritage.html
・NOAA retires NOAA-16 polar satellite
 http://www.noaanews.noaa.gov/stories2014/20140609_goes16.html

引用元: 【宇宙】米国の気象衛星が軌道上で分解、宇宙ゴミが発生か - 米軍発表

米国の気象衛星が軌道上で分解、宇宙ゴミが発生か - 米軍発表の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/10/02(金) 00:45:03.95 ID:???*.net
ごみ問題解消か、虫で発泡スチロールを生物分解
http://www.cnn.co.jp/fringe/35071300.html

(CNN) ペットショップなどで販売されているミールワームに発泡スチロールを食べさせると、腸の中で生物分解可能な物質に変換されることがことが1日までに分かった。北京航空航天大学や米スタンフォード大学の研究チームが学会誌に発表した。

 これまでプラスチックは生物分解できないと思われていたが、今回の発見は世界のプラスチックごみ問題の解決につながる可能性があると指摘している。

 ミールワームはゴミムシダマシの幼虫で、ペットショップなどで一般的に販売されている。スタンフォード大学のウェイミン・ウー氏らの研究チームによると、ミールワームの腸の中にはポリエチレンを生物分解できる微生物がいることが判明。発泡スチロールを餌として与えたところ、幼虫100匹で1日当たり34~39ミリグラムの発砲スチロールを食べたという。

続きはソースで

images


引用元: 【技術】ごみ問題解消か、虫で発泡スチロールを生物分解

ごみ問題解消か、虫で発泡スチロールを生物分解の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/08/24(月) 07:29:37.46 ID:???*.net
08月24日 07時23分

東京大学と茨城大学などの研究グループは、バイオ燃料やバイオプラスチックの原料になる「セルロース」という植物に含まれる物質を分解する酵素を解析しました。
これにより安価にバイオプラスチックなどを生産する技術開発につながると期待されています。

これは、東京大学の五十嵐圭日子准教授と茨城大学や茨城県などの研究グループが発表したものです。
それによりますと、木や草に含まれる「セルロース」は自然界に最も豊富にあることから、バイオ燃料やバイオプラスチックの原料としての利用が期待されていますが、分解が難しく、コストがかかることが課題でした。

五十嵐准教授のグループでは、「セルロース」を容易に分解し、栄養にするきのこやかびなどが出す「セルラーゼ」という酵素に注目し、東海村のJーPARCにある装置を使って構造を解析しました。

続きはソースで

images


http://www3.nhk.or.jp/lnews/mito/1074130401.html

引用元: 【科学】セルロース分解酵素を解析

セルロース分解酵素を解析の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/07(火) 06:23:42.53 ID:???.net
シロアリ腸内の原生生物の表面共生細菌がリグノセルロース分解に寄与 | 理化学研究所
http://www.riken.jp/pr/press/2015/20150706_1/

画像
http://www.riken.jp/~/media/riken/pr/press/2015/20150706_1/fig1.jpg
図1 ヤマトシロアリと腸内原生生物の細胞表面共生細菌
上左:体長約0.5cmのヤマトシロアリ
上右:Dinenympha属原生生物の細胞表面共生細菌の検出。緑の細菌がシングルセルゲノム解析した細菌。赤の細菌は、異なる種の細胞表面共生細菌。スケールは20 µm
下左:細胞表面共生細菌の電子顕微鏡像。青矢印で示されているのが今回解析した細胞表面共生細菌。スケール0.5 µm

http://www.riken.jp/~/media/riken/pr/press/2015/20150706_1/fig2.jpg
図2 本研究で明らかになった細胞表面共生細菌の役割
腸内に入ってきたリグノセルロースは、細胞表面共生細菌が持つ分解酵素によって、部分的に分解され、セルロース部分が露出した状態になると考えられる。原生生物は、分解しやすくなったリグノセルロースを細胞内に取り込み、完全に分解する。細胞表面共生細菌は、リグノセルロースの分解産物である糖を取り込み、エネルギー源として使用して代謝産物として酢酸を生成することが推定された。この酢酸は、シロアリのエネルギー源として供給されると考えられる。

背景 

シロアリは、木材を食い荒らす害虫として扱われていますが、森林では枯れ木を分解する重要な役割を担っています。木材を効率的に分解することができる能力は、食料と競合しないバイオマスであるリグノセルロースの利活用への応用に期待されています。

シロアリ自身もリグノセルロースの主成分であるセルロースを分解する酵素を持っていますが、腸内に共生する微生物群がセルロース分解の大半を担っています。この微生物群は10数種の単細胞の真核生物である原生生物と数百種の細菌から構成されています。ほとんどの微生物は培養が難しいため、培養を介さない解析手法を用いて微生物群全体からセルロース分解活性や分解に関わる酵素の遺伝子、代謝産物の解析が行われてきました。これまでの解析では、原生生物がセルロースを細胞内に取り込んで分解することから、分解プロセスで主に働いているのは原生生物であると考えられてきました。

しかし、微生物群集全体を対象にした解析では、個々の微生物がリグノセルロースの分解で、どのような役割を担っているのかを明らかにすることが難しく、シロアリ腸内の効率的なリグノセルロース分解プロセスの詳細については分かっていませんでした。


研究手法と成果

共同研究チームは、ヤマトシロアリ(図1上左)の腸内に共生する細菌を細胞自動分離装置により、1細胞ずつに分離後、ゲノムDNAを増幅しました。この中から、Dinenympha属の原生生物の細胞表面に共生している細菌(図1上右、下左)の全ゲノム増幅産物を用いて、シングルセルゲノム解析を行いました。

シングルセルゲノム解析により、全ゲノム配列の約80%に当たる総塩基数が約3.5 Mb(メガベース)のドラフトゲノム配列を得ることができました。ゲノム配列にコードされている遺伝子の機能を推定した結果、58個の遺伝子がさまざまなリグノセルロースを分解する酵素の機能を持つ事が分かりました。

続きはソースで

ダウンロード



引用元: 【細菌学/分子生物学】シロアリ腸内の原生生物の表面共生細菌がリグノセルロース分解に寄与 理研

シロアリ腸内の原生生物の表面共生細菌がリグノセルロース分解に寄与 理研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/13(月) 10:14:36.19 ID:???.net
2015年 7月 7日
国立研究開発法人海洋研究開発機構
エノキは煮崩れるのか?
― キチンが超臨界水中で分解される様子を高解像度顕微鏡で観察 ―
http://www.jamstec.go.jp/j/about/press_release/20150707/

1.概要

海洋研究開発機構(理事長 平 朝彦)海洋生命理工学研究開発センターの出口茂研究開発センター長らは、深海熱水噴出孔に見られる高温・高圧の水環境で起こる物理・化学現象を直接観察できる高解像度光学顕微鏡を用いて、250気圧の高圧下でエビやカニなどの甲殻類に含まれる多糖の一種「キチン」が400℃近い高温・高圧水中で分解される様子を観察することに成功しました。さらに、キチンを主成分とした細胞壁をもつエノキの細胞の構造が、200℃以上で煮崩れ始め、最終的に400℃近辺で完全に分解される様子を観察することにも成功しました。

キチンはセルロースに次いで世界で豊富に存在するバイオマス(>>1とされ、その有効活用が期待されています。一方、同じく高温・高圧の環境である深海の熱水噴出域にもハオリムシやゴエモンコシオリエビなどキチン質からなる深海生物が生息していることが知られています。
JAMSTEC海洋生命理工学研究開発センターでは本研究で得られたキチンの安定性に関する知見を基に、これら極限環境に生きる深海生物の生態および独自の構造機能を解明し、その工学利用を進めていく予定です。

本成果はScientific Reports誌に7月7日付け(日本時間)で掲載されました。


詳しくはソースをご覧ください

ダウンロード
 

引用元: 【化学】エノキは煮崩れるのか? ― キチンが超臨界水中で分解される様子を高解像度顕微鏡で観察 ― 海洋研究開発機構

エノキは煮崩れるのか? ― キチンが超臨界水中で分解される様子を高解像度顕微鏡で観察 ― 海洋研究開発機構の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/07/02(木) 00:35:36.58 ID:???.net
世界最強の磁石でタンパク質解析 新薬開発に期待
引用元:47NEWS 2015/07/01 19:09配信記事
http://www.47news.jp/CN/201507/CN2015070101001703.html 

images

世界で最も強い超電導磁石を利用して、タンパク質の構造を分子レベルで解析できる核磁気共鳴(NMR)装置を開発したと物質・材料研究機構(茨城県つくば市)などが1日発表した。
従来のNMR装置に比べ、細かく見分ける能力が格段に向上し、新薬の開発や新素材の研究など幅広い分野で役立つという。

装置は高さ5メートルの円筒形で重さ約15トン。
超電導物質をコイルにして作った磁石で磁場を発生させ、試料を解析する。
磁場の強さは世界最高の24テスラを達成した。

画像:世界最強の超電導磁石を使った核磁気共鳴装置=1日午後、茨城県つくば市の物質・材料研究機構
http://img.47news.jp/PN/201507/PN2015070101001788.-.-.CI0003.jpg

▽関連リンク
物質・材料研究機構
世界最高磁場※のNMR装置(1020MHz)の開発に成功
高温超伝導体の応用が決め手 新薬創製・新物質開発の高速化にむけて大きな前進
http://www.nims.go.jp/news/press/07/201507010.html

引用元: 【技術】世界最強の超電導磁石を利用 核磁気共鳴(NMR)装置を開発 タンパク質構造を分子レベルで解析/物質・材料研究機構

世界最強の超電導磁石を利用 核磁気共鳴(NMR)装置を開発 タンパク質構造を分子レベルで解析/物質・材料研究機構の続きを読む

このページのトップヘ