理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

半導体

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/08(水) 15:55:34.66 ID:CAP_USER
白石誠司 工学研究科教授、セルゲ◯・ドゥシェンコ 同博士研究員(研究当時、現:米国標準化研究所及びメリーランド大学研究員)、外園将也 同修士課程学生らの研究グループは中村浩次 三重大学准教授と共同で、金属である白金を極めて薄い膜(超薄膜)にしたとき、シリコンなどの半導体で実現されるトランジスタ特性(材料の抵抗を外部電圧で制御する特性)が現れること、さらにそれに伴って白金がスピンを電流に変換する「スピン軌道相互作用」という機能を大幅に変調・制御ことができることを世界で初めて発見しました。

 固体物理学における常識を覆す発見であり、特にエレクトロニクスやスピントロニクス分野の新しい発展に繋がる成果です。

 本研究成果は、2018年8月7日に英国の国際学術誌「Nature Communications」にオンライン掲載されました。

■概要
 今日の情報社会の隆盛をもたらしたトランジスタは、半導体(現在は一般的にシリコンが用いられる)中のキャリア(電子または正孔)をゲート電圧で誘起することで、抵抗の大きさを制御し、情報のオンとオフを操作します。

 しかし、金属は一般的にキャリアの数が非常に多いために、ゲート電圧によってキャリアを誘起しても、抵抗を変えることは困難でした。

 本研究グループは、まず2ナノメートルという極めて薄い白金(Pt)の膜(超薄膜)を、磁性絶縁体であるイットリウム鉄ガーネット(YIG)の上に作製しました。そして、このPt超薄膜の上にイオン液体をのせて強いゲート電圧をかけたところ、上記のような半導体で実現されるトランジスタ特性が現れることを発見しました。

続きはソースで

■今回の研究で用いた素子の構造図と実験の概念図
http://www.kyoto-u.ac.jp/ja/research/research_results/2018/images/180807_1/01.jpg

http://www.kyoto-u.ac.jp/ja/research/research_results/2018/images/180807_1/02.jpg

京都大学
http://www.kyoto-u.ac.jp/ja/research/research_results/2018/180807_1.html
images


引用元: 【固形物理学】金属が半導体に化ける可能性 -超薄膜の白金がトランジスタ特性を発揮することを発見-京都大学[08/08]

金属が半導体に化ける可能性 -超薄膜の白金がトランジスタ特性を発揮することを発見-京都大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/25(月) 09:53:44.72 ID:CAP_USER
富士通と理化学研究所(理研)は、2021年頃の共用開始を目指して進めている、スーパーコンピュータ「京」の後継機となるポスト「京」の開発に関して、その中核となるCPUの試作チップを完成し、機能試験を開始したことを発表した。

富士通と理研は、2006年より「京」を共同で開発し、2012年に完成、共用が開始された。
「京」はスーパーコンピュータの実用面を示す主要な性能指標で現在でも世界トップ(2017年11月のランキング)の性能を有しており、先端的研究において不可欠な研究開発基盤として運用されている。

この「京」の後継機であるポスト「京」は、さまざまな科学的・社会的課題を解決する先端研究開発基盤、および今後我が国が目指す新たな人間中心の社会"Society 5.0"の実現を支える重要な基盤としても期待されている。
「京」で実現された高いメモリバンド幅と倍精度演算性能をより強化するとともに、AIなどの分野で重要となる半精度演算にも対応した。
今回、このように設計したCPUの試作チップにおいて初期動作を確認したことで、システム開発における重要なマイルストーンを順調にクリアしたことになる。

ポスト「京」の中核となるCPUは、Armv8-A SVEアーキテクチャを採用しつつ、「京」を含むこれまでのスーパーコンピュータ開発で富士通が培ったマイクロアーキテクチャ(ハードウェアの設計)を継承し、高性能積層メモリと相まったメモリバンド幅と演算性能を備え、アプリケーションの実行性能が高いレベルで実現できるように最適化されている。
さらに、最先端の半導体技術を用いることと、省電力設計および電力制御機能を盛り込むことで、高い消費電力あたり性能を実現する。

続きはソースで

マイナビニュース
https://news.mynavi.jp/article/20180622-652176/
ダウンロード (5)


引用元: 【IT】富士通と理研、ポスト「京」のCPUの試作チップ完成-機能試験の開始を発表[06/22]

富士通と理研、ポスト「京」のCPUの試作チップ完成-機能試験の開始を発表の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/18(水) 13:59:22.89 ID:CAP_USER
 理化学研究所創発物性科学研究センター 創発ソフトシステム研究チームの福田憲二郎専任研究員、 染谷隆夫チームリーダー、東レ株式会社の北澤大輔主任研究員らの国際共同研究グループは17日、耐熱性と高いエネルギー変換効率を兼ね備えた「超薄型有機太陽電池」の開発に成功した。

 衣服に貼り付けられる柔軟性の高い太陽電池は、ウェアラブルセンサーや電子デバイスを実現する上で注目されてきたが、これまでの超薄型有機太陽電池は十分なエネルギー変換効率と耐熱性を両立するのが難しかったため、加工プロセスでの適応が妨げとなっていた。

 今回開発した有機太陽電池は、耐熱性と高エネルギー変換効率を両立する新しい半導体ポリマー「PBDTTT-OFT」を利用。
従来の「PBDTTT-EFT」と似た骨格だが、直線状の側鎖を持ち、高い結晶性を持つ膜の形成で、加熱による導電性低下を防いだ。

 また、超薄型基板材料として、従来のパリレンと比較して表面平坦性と耐熱性に優れる透明ポリイミドを採用。

続きはソースで

関連ソース画像
https://pc.watch.impress.co.jp/img/pcw/docs/1117/512/1_l.jpg

関連動画
耐熱性・高効率・超薄型有機太陽電池 https://youtu.be/IbIcFgXTBGc



PC Watch
https://pc.watch.impress.co.jp/docs/news/1117512.html
ダウンロード


引用元: 【太陽電池】アイロンで衣服に接着できる超薄型有機太陽電池[04/17]

アイロンで衣服に接着できる超薄型有機太陽電池の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/02/05(月) 02:27:20.70 ID:CAP_USER
「0と1」の状態を同時に持つことができる量子の特性をいかすことで極めて速い処理能力を実現するとされる量子コンピューターは、夢のコンピューターとも呼ばれて実用化が大きく期待されています。
実現すれば、現代の既存のコンピューターとは比べものにならないほどの高い処理能力を持つといわれる量子コンピューターですが、実はその実用化にはまだ大きな壁が立ちはだかっているとのこと。
その実態について科学・コンピューター技術専門メディアのQuanta Magazineがまとめています。

The Era of Quantum Computing Is Here. Outlook: Cloudy | Quanta Magazine
https://www.quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/

1980年代にその概念が提唱され、1990年代には理論的に実証が可能なことが報告されていた量子コンピューターは、実現すれば既存のコンピューターとは比べものにならないほど速い処理速度を実現すると期待されています。
従来のコンピューターは、膨大な数の「0」と「1」からなるデジタルデータを超高速で処理することでさまざまな機能を実現しているのですが、2015年以降は半導体チップの進化を示してきた「ムーアの法則」の限界が叫ばれるようになり、いよいよ技術の限界点に差し掛かろうとしているともいわれています。

そんな状況を打破し、次世代のコンピューターとして大きく注目を集めているのが量子コンピューターです。

量子コンピューターは量子が持つ「0と1が同時に存在する」という特性をいかすことで、まさに「次元の違う」レベルの処理速度を実現することが可能であるといわれています。
従来型のコンピューターの場合、処理を行うプロセッサの数と処理能力の関係は、基本的に単比例によって増加します。
一方、量子コンピューターはその能力が指数関数的に増加することが理論的に証明されていることからも、次世代の技術を可能にするブレークスルーとして期待が寄せられています。
科学誌「Neture」は2017年1月に量子コンピューターは2017年に「研究」から「開発」の段階に移行すると発表しており、実際にIBMは2017年3月にクラウドベースで誰もが量子コンピューティングを使ってみることが可能な商業サービス「IBM Q」を発表するなど、量子コンピューター界隈ではにわかにさまざまな動きが起こり始めています。

しかしQuanta Magazineによると、その実現に向けた道のりは広く考えられているほど楽観的ではないとのこと。
最先端のコンピューター技術としてもてはやされている量子コンピューターですが、その実現にはまだまだ高い壁が立ちはだかっているといいます。

「0と1が同時に存在すること」を利用して計算を行う量子コンピューターは、「量子重ね合わせ」と「量子もつれ」の効果を利用することで「超並列」と呼ばれる処理を実現します。
この、「0と1の状態が同時に存在する」という情報の単位は量子ビットと呼ばれ、量子コンピューターを実現する上で最も基本的な事柄の一つです。

続きはソースで

関連ソース画像
https://i.gzn.jp/img/2018/02/04/quantum-computing/32390815144_f14b33ee0f_z.jpg

GIGAZINE
http://gigazine.net/news/20180204-quantum-computing/
ダウンロード (1)


引用元: 【テクノロジー】「夢のコンピューター」と呼ばれる量子コンピューター実用化の前に立ちはだかる大きな壁とは?[02/04]

「夢のコンピューター」と呼ばれる量子コンピューター実用化の前に立ちはだかる大きな壁とは?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/08/31(木) 23:11:15.52 ID:CAP_USER9
http://jp.mobile.reuters.com/article/technologyNews/idJPKCN1BB16M

[東京 31日 ロイター] - 次世代コンピューターの開発競争が過熱している。米IBM(IBM.N)などが本命とされる量子コンピューターの開発競争でリードする一方、NTT(9432.T)など日本勢は「組み合わせ最適化問題」の解決に特化したコンピューターで一足先の実用化を目指している。

だが、将来の産業社会で主導権を握るには「本命」の開発は避けて通れない。危機感を持つ文部科学省は来年度予算の概算要求に光・量子技術の推進費として32億円を盛り込んだが、欧米に比べ1ケタ少なく、研究者の間からは予算の格差を危惧する声も聞かれる。

<限界打破の決め手>

「半導体の集積密度は、18カ月で2倍になる」というコンピューターの性能向上を支えてきたムーアの法則。だが、半導体の微細化は限界に近づき、最近ではその終えんもささやかれるようになってきた。

この状況を打破する決め手として注目されているのが、量子コンピューターだ。

従来のコンピューターでは、0か1のいずれかの値をとるが、量子コンピューターは0でもあり、1でもあるという量子力学の「重ね合わせ」という概念を利用するため、複数の計算を同時にできるのが特徴だ。

基本単位は「量子ビット」と呼ばれ、量子ビットの数をnとすると、最大で「2のn乗」通りの計算を同時に行える。

続きはソースで

2017年 8月 31日 7:23 PM JST
ダウンロード


引用元: 【技術】量子コンピューター、来年度予算に32億円 米国先行に危機感 [無断転載禁止]©2ch.net

量子コンピューター、来年度予算に32億円 米国先行に危機感の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/06/06(火) 18:52:26.19 ID:CAP_USER
https://www.nikkan.co.jp/articles/view/00430983

https://d1z3vv7o7vo5tt.cloudfront.net/medium/article/img1_file59365a250ab20.jpg
線幅5ナノメートルのトランジスタを作りこんだシリコンウエハー(米IBM提供)

米IBM、半導体受託製造大手の米グローバルファウンドリーズ(GF)、韓国・サムスン電子などで構成される研究コンソーシアムは、線幅5ナノメートル(ナノは10億分の1)の半導体チップを可能にする業界初の製造プロセスを開発した。線幅10ナノメートルの現行チップの次々世代の半導体で、実用化されれば10ナノチップに比べ、40%の性能向上と75%の省電力化が見込めるという。京都で開催中の半導体技術と回路に関する国際会議「VLSIシンポジウム」で5日発表した。

同コンソーシアムが線幅7ナノメートルのテストチップまで採用してきたフィン型の電界効果トランジスタ(FinFET=フィンフェット)構造に代わり、IBMが10年以上かけて研究してきたナノシート半導体の技術を採用。

続きはソースで

(2017/6/6 16:00)

ダウンロード (1)


引用元: 【半導体】IBM・GF・サムスン、線幅5ナノの半導体製造プロセスにめど [無断転載禁止]©2ch.net

IBM・GF・サムスン、線幅5ナノの半導体製造プロセスにめどの続きを読む
スポンサーリンク

このページのトップヘ