理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

原子

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/02/19(月) 14:36:18.53 ID:CAP_USER
すばらしい写真というものは、ときにデジタル一眼レフカメラと小さな原子、そして好奇心旺盛な博士論文の提出候補者という組み合わせで撮影されるものだ。

 英オックスフォード大学で、量子コンピューターに使う原子を閉じこめる研究をしていたデビッド・ナドリンガー氏は2017年8月7日、一般的なデジタル一眼レフカメラを使ってこの写真を撮影した。
黒い背景の前で青紫色のライトに照らされているのは、プラスに帯電したストロンチウム原子だ。
両側には2つの金属電極があり、間にできる電界によって、原子はほぼ静止している。
この装置はイオントラップと呼ばれる。小さな2つの針の先端の間の距離は、2ミリにも満たない。

 この写真につけられたタイトルは「イオントラップ内の1つの原子」。
これが、英国の工学・物理科学研究会議(EPSRC)による科学写真コンテストで表彰された。

 原子はあまりに小さいため、肉眼で見ることはできない。

 EPSRCのプレスリリースで、ナドリンガー氏は「1個の原子を目に見えるかたちで表現することは、微小な量子の世界と私たちの巨大な現実を直接的、直感的に結ぶことができるすばらしいアイデアだと思いました」と述べている。
「ある静かな日曜日の午後、カメラと三脚を持って研究室に向かいました。
そして、小さな薄い青色の点が映ったこの写真を撮ることができたのです」


 ナドリンガー氏は、イオントラップの超高真空室の窓をのぞきこむようにして写真を撮影した。
使用したのは、50mmレンズと接写用のエクステンションチューブ、そしてカラーフィルターをつけた2つのフラッシュ装置だ。エクステンションチューブは一般に、レンズの焦点距離を長くしてクローズアップ写真を撮るために使われる。

続きはソースで

画像:プラスに帯電し、電界によってほぼ静止している1つのストロンチウム原子を撮影した写真。よく見ると、黒い部分の中心にうっすらと青い光が見える。
http://natgeo.nikkeibp.co.jp/atcl/news/18/021600072/01.jpg
画像:中央部を拡大したもの
http://natgeo.nikkeibp.co.jp/atcl/news/18/021600072/ph.jpg

ナショナルジオグラフィック日本版サイト
http://natgeo.nikkeibp.co.jp/atcl/news/18/021600072/
ダウンロード (1)


引用元: 【話題】〈画像あり〉「原子」が見えた! なんと一眼レフで撮影に成功 科学写真コンテスト[02/19]

「原子」が見えた! なんと一眼レフで撮影に成功 科学写真コンテストの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/01/24(水) 15:26:06.22 ID:CAP_USER
国立研究開発法人 情報通信研究機構(以下NICT)は、NICT電磁波研究所 原基揚主任研究員らが、国立大学法人 東北大学 大学院 工学研究科 機械機能創成専攻 小野崇人教授、国立大学法人 東京工業大学 科学技術創成研究院 未来産業技術研究所 伊藤浩之准教授と共同で、小型原子時計システムの開発に成功したと発表した。

 原子時計は非常に高精度な時計システムで、日本標準時の生成などにも用いられており、GPS衛星や無線基地局など、一部の機器や施設などで設置、利用されている。

 電子機器間の高精度かつ均等な同期を実現するための同期網構築には、原子時計そのものの高精度化だけでなく、原子時計を搭載した通信ノードの拡充も重要となる。
そのさい、スマートフォンなどの携帯端末を含め、すべての通信ノードに原子時計を搭載するのが、高精度な同期の実現において最も理想的だが、大きさや重さ、消費電力の点などから、持ち運ぶ端末に搭載するのは困難だった。

 欧米を中心に原子時計の小型化研究も行なわれているが、まだ数cm角程度の大きさがあり、携帯端末に搭載するには、さらなる小型化が求められていた。

 今回発表されたのは、水晶発振器と周波数逓倍回路を必要としない、シンプルなマイクロ波発振器を用いた原子時計システムで、原子時計の大幅な小型化、低消費電力化を実現するという。

 原子時計では、ルビジウムなどアルカリ金属元素のエネルギー準位差から得られる共鳴現象に、外部のマイクロ波発振器を同調させるように制御することで、安定した周波数を提供する。

続きはソースで

小型原子時計の動作概略とマイクロ波発振器の構成
https://pc.watch.impress.co.jp/img/pcw/docs/1102/621/01_l.png
圧電薄膜共振子を用いた発振器
https://pc.watch.impress.co.jp/img/pcw/docs/1102/621/03_m.png
米粒と比較
https://pc.watch.impress.co.jp/img/pcw/docs/1102/621/20180123-06_l.png
MEMS技術を用いた小型ルビジウムガスセル
https://pc.watch.impress.co.jp/img/pcw/docs/1102/621/20180123-06_l.png

PC Watch
https://pc.watch.impress.co.jp/docs/news/1102621.html
ダウンロード


引用元: 【テクノロジー】情報通信研究機構(NICT)、原子時計をスマホに搭載できるレベルまで小型化[18/1/23]

情報通信研究機構(NICT)、原子時計をスマホに搭載できるレベルまで小型化の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/01/12(金) 16:15:41.25 ID:CAP_USER BE:822935798-PLT(12345)
sssp://img.5ch.net/ico/kasa-ri.gif
東北大学の研究成果プレスリリース情報『原子層鉄系高温超伝導体で質量ゼロのディラック電子を発見』(共同通信PRワイヤー)

 2018年1月12日 09時00分(最終更新 1月12日 09時00分)

【概要】
東北大学大学院理学研究科の中山耕輔助教、佐藤宇史教授、同大学材料科学高等研究所の高橋隆教授らの研究グループは、原子層鉄系高温超伝導体において、質量ゼロの性質を持つ「ディラック電子(注1)」を発見しました。
この成果は、超高速・超伝導ナノデバイスの実現に道を拓くだけでなく、高温超伝導の発現機構の解明に向けても重要な一歩となります。
本成果は、米国物理学会誌フィジカル・レビュー・Bの注目論文に選ばれ、平成29年12月29日(米国東部時間)にオンライン速報版に掲載されました。

【研究の内容】
今回、東北大学の研究グループは、分子線エピタキシー法(注4)を用いて、酸化物の基板上に原子レベルで制御された高品質な1層のFeSe薄膜を作製しました。

続きはソースで

https://mainichi.jp/articles/20180112/pls/00m/020/501000c

Two-dimensional Dirac semimetal phase in undoped one-monolayer FeSe film
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.220509
images


引用元: 【量子論】原子層鉄系高温超伝導体で質量ゼロのディラック電子を発見 東北大学

【量子論】原子層鉄系高温超伝導体で質量ゼロのディラック電子を発見 東北大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/30(土) 21:45:56.02 ID:CAP_USER9
炭素原子とその結合からできた蜂の巣のような六角形格子構造を持つシート状の物質「グラフェン」は、ダイヤモンド以上に炭素同士の結合が強く、世界で最も引っ張りに強い物質であり、世界で最も熱伝導率が良い物質とされている。
そのグラフェンを応用し、「最強の防御」を得られるであろう素材が新たに開発された。

グラフェンを2層構造にした「ジアメン(diamene)」は、強い力が加わった時、と貫通不能なダイヤモンドプレートに変化するという。
薄い素材で軽量なのにこの防御力。防弾服に最適である。

■グラフェンとは?

まず、グラフェンをご存知ない方のために説明しよう。
蜂の巣状に並ぶ炭素原子で形成された平らな金網を想像してもらえばいい。

この配列にすると、各炭素原子の3つの電子が原子の手にかたく結びつき、1つは自由に動けるまま残ることから、炭素に素晴らしい特性をもらたす。
ルーズな電子という特性から伝導テクノロジーにも利用できるし、そのメカニカル特性を利用すれば狭いナノチューブを作り出すこともできる。
どちらもの場合も、グラフェンが平らな二次元構造であるゆえに可能になることだ。

image credit:グラフェンの分子構造モデル
http://livedoor.blogimg.jp/karapaia_zaeega/imgs/f/e/fedd0918.jpg

■グラフェンを二枚重ねることで、弾丸貫通不能な無敵の防御素材に

アメリカ・ニューヨーク市立大学先端科学研究センターの研究者は、グラフェン・シートを2枚重ねて、強い力で潰された時に三次元のダイヤモンド状構造に変化するようにした。
これは4つめの電子が固定されるとグラフェンがまた別の有名な炭素同素体、すなわちダイヤモンドに変化する性質を利用したものだ。

またシートの伝導性が急激に変化することで、いくつか面白い電気的特性が生じる。
だが、その応用としてまず考えられるのは軽量の保護材としてである。

続きはソースで

http://livedoor.blogimg.jp/karapaia_zaeega/imgs/7/6/76b554ab.jpg
http://karapaia.com/archives/52251509.html
ダウンロード


引用元: 【技術】銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果

銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/27(水) 05:15:47.87 ID:CAP_USER
富田隆文 理学研究科博士課程学生、高橋義朗 同教授、段下一平 基礎物理学研究所助教らの研究グループは、レーザー光を組み合わせて作る光格子に極低温の原子気体(レーザー冷却、蒸発冷却などを施し、真空容器中の気体を絶対温度でナノケルビンの温度にまで液化・固化させることなく冷却させたもの)を導入し、周囲の環境との相互作用によるエネルギーや粒子の出入り(以下、散逸)が量子相転移(圧力や磁場などを変化させた際に量子力学的なゆらぎにより物質の状態が異なる状態へと変わること)に与える影響を観測することに、世界で初めて成功しました。

 本研究成果は、2017年12月23日午前4時に米国の科学誌「Science Advances」に掲載されました。

〈概要〉

 金属の中では、規則的にイオンが配列した結晶構造の中を電子が動き回っています。
電子に代表されるような量子力学に従う粒子が多数集まり互いに相互作用している系を量子多体系といい、
このような系で起こる物理現象を解明することは物質の性質を理解する上で非常に重要です。
また、量子力学に従う物質で構成された系は、散逸の影響で容易にその状態が変わってしまうため、量子多体系に対して散逸がどのような影響を及ぼすかを明らかにすることは、物質中で起こる物理現象の理解や量子技術を用いたデバイスの開発にとって重要です。

 本研究グループは、「モット絶縁体-超流動相転移」と呼ばれる量子相転移に対して、制御性の高い散逸を人工的に導入し、その影響を調べました。

続きはソースで

京都大学
http://www.kyoto-u.ac.jp/ja/research/research_results/2017/171223_2.html
ダウンロード (2)


引用元: 【京都大学】見られていると絶縁体が安定化する -観測による量子多体状態の制御技術を確立-

【京都大学】見られていると絶縁体が安定化する -観測による量子多体状態の制御技術を確立-の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/19(火) 23:50:07.50 ID:CAP_USER
軽くて薄く、そして強靱な素材として知られるグラフェン。この2次元の原子シートを用いることで無尽蔵にエネルギーを得られる可能性があることが、米大学の研究で明らかになった。鍵を握るのは、グラフェンの「ゆらぎ」だ。

ミクロの世界は、われわれを「ゆらぎ」の世界へといざなってくれる。液体の中にある微粒子を顕微鏡で見てみると、それらは生物のようにゆらゆらと不規則にうごめいて見えるはずだ。その理由は、熱運動する原子や分子が、溶媒中の微粒子と常にぶつかり合っているからだという。

この無尽蔵の「ゆらぎ」は、もしかすると人類に究極のクリーンエネルギーを提供してくれる鍵となるかもしれない。米アーカンソー大学の物理学者チームが、グラフェンの持つ特徴的な「ゆらぎ」から、エネルギーを取り出すことができるという強力な証拠を発見したのだ。

■2次元グラフェンの存在を可能にする「ゆらぎ」

鉛筆の芯の材料であるグラファイト(黒鉛)から生まれたことで知られるグラフェンは、軽くて薄く、そして強靱なことから「夢の素材」とも称される。これは蜂の巣のような六角形の構造が規則正しく平面上に繰り返された、2次元の原子シートである。ところがグラフェン自体、そもそも物理的に存在不可能な構造であるはずなのだという。

「グラフェンのように原子1個分の厚みをもつ平坦な素材とは、本質的にとても不安定で、超低温でも溶融してしまうはずなのです」と、米アーカンソー大学の物理学者ポール・ティバード教授は『WIRED』日本版の取材に説明する。これは「マーミン=ワグナーの定理」として知られている。「ですから、2004年のグラフェン発見は非常に驚くべきことでした」

ティバードをはじめとする研究チームは、2010年より“規格外の物質”であるグラフェンが存在しうる物理学の抜け穴を探し続けてきた。その結果、グラフェンは完全に平坦ではありえないことがわかってきたという。「2次元の素材は、存在するために波形で構成されていなければならないはずです」と、ティバードは言う。それも静止した状態ではなく、常に動き回るダイナミックなそれだ。つまりグラフェンは、熱運動により常に「ゆらいで」いるのである。

「この動きをブラウン運動といいます。実際にわたしたちの目でグラフェンの表面を見ることができたとすれば、海の表面のようだと形容できることでしょう。それらの波は不規則に上下したり、周期的に動いたりし、ときには表面を横切る“はぐれ波”のようなものもあります」

彼らは、走査トンネル顕微鏡を用いた実験と、シミュレーションを用いた理論的研究を経て、原子1個分のスケールでグラフェンの上下運動を監視できる技術を開発。まるで海面で上下するブイのように動くグラフェンの高さと時間データセットから速度を計算し、速度分布率を作成した。

するとこのデータから、グラフェンは思いもよらないスピードで上下していることがわかった。それらの動きはブラウン運動の「ゆらぎ」に加えて、さらに大きい高さをもつものだった。物理学ではこの現象をレヴィ飛翔と呼んでいるが、この非常に珍しい現象が、グラフェンでは毎秒何百回も起こっていたのだという。

「この謎を解明するのがわれわれのブレークスルーの鍵でした」と、ティバードは説明する。「最先端の分子動力学シミュレーションによって、グラフェンは単に振動しているだけではなく、波形に湾曲したグラフェンが凸面から凹面に反転することがわかったのです」

続きはソースで

https://wired.jp/2017/12/19/energy-from-graphene/
ダウンロード (1)


引用元: 【ナノテク】二次元材料グラフェンから無尽蔵のクリーンエネルギーを取り出せる可能性 

【ナノテク】二次元材料グラフェンから無尽蔵のクリーンエネルギーを取り出せる可能性の続きを読む
スポンサーリンク

このページのトップヘ