理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

反応

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/27(火) 20:10:46.00 ID:CAP_USER
ドイツにあるマックスプランク・プラズマ物理学研究所(IPP)で開発されている核融合実験炉「ヴェンデルシュタイン7-X」は、核融合発電の実現に向けた実証実験を行っています。そんなヴェンデルシュタイン7-Xは良好な実験結果を残しており、従来の計画通りさらなる改良が加えられることが報じられています。

Successful second round of experiments with Wendelstein 7-X | Max-Planck-Institut für Plasmaphysik
https://www.ipp.mpg.de/4550215/11_18

水素やヘリウムといった軽い原子による核融合反応を用いてエネルギーを発生させる核融合炉は、次世代の発電機構として長らく注目を集めています。太陽をはじめとする恒星が光り輝くのも核融合反応によるものですが、地球上で核融合反応を発生させるためには人工的に極めて高温または高圧の環境を作り出す必要があるとのこと。

そんな核融合反応を発生させる核融合炉・ヴェンデルシュタイン7-Xはヘリカル型と呼ばれる方式を用いたものです。ヘリカル型の核融合炉では、ねじれたコイルを周回させた機構に電流を流して閉じ込め型の磁場を作り出し、その内部に核融合反応によって発生した高温・高密度のプラズマを閉じ込めておくという仕組みになっています。

続きはソースで

https://i.gzn.jp/img/2018/11/27/wendelstein-7-x-next-upgrading/01_m.jpg

GIGAZINE
https://gigazine.net/news/20181127-wendelstein-7-x-next-upgrading/
ダウンロード


引用元: 世界記録を達成した核融合実験炉「ヴェンデルシュタイン7-X」がさらなるアップデートを行う予定[11/27]

世界記録を達成した核融合実験炉「ヴェンデルシュタイン7-X」がさらなるアップデートを行う予定の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/14(水) 12:37:59.41 ID:CAP_USER
 再生医療に関する慶応大学の審査委員会は13日、様々な細胞に変化する人のiPS細胞(人工多能性幹細胞)を使って、脊髄損傷を治療する同大チームの臨床研究計画をおおむね承認した。近く正式に承認し、厚生労働省に計画を申請する。国の了承が得られれば、来年中にも治療を始める方針。iPS細胞から作った細胞を脊髄損傷患者に移植するのは世界初となる。

images

https://www.yomiuri.co.jp/photo/20181114/20181114-OYT1I50007-L.jpg

読売新聞
https://www.yomiuri.co.jp/science/20181114-OYT1T50018.html

引用元: 【再生医療】脊髄損傷、iPS治療…慶大が臨床研究申請へ[11/14]

脊髄損傷、iPS治療…慶大が臨床研究申請への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/21(水) 13:36:59.84 ID:CAP_USER
<中国科学院合肥物質科学研究院は独自に設計開発した核融合実験装置「EAST(東方超環)」で高温プラズマ中心の電子温度が初めて摂氏1億度を達したことを明らかにした>

■夢のエネルギー、核融合発電

ウランやプルトニウムといった重原子の原子核分裂反応を利用する従来の原子力発電に対して、水素やヘリウムのような軽原子の核融合反応でエネルギーを発生させる核融合発電は、ほぼ無限に利用できる"クリーンエネルギー"として有望なエネルギー技術だ。

核融合反応は、太陽などの恒星が光輝き、エネルギーを放射する原理に倣ったもので、海中に豊富に存在する重水素やリチウムを利用するため資源の枯渇リスクがなく、発電過程で二酸化炭素を発生させない。また、核分裂反応をベースとする従来の原子力発電と異なり、高レベル放射性廃棄物が発生することもない。

恒星では巨大な重力によって核融合反応が維持されているが、地球で核融合反応させるためには超高温かつ超高圧な環境を人工的につくりだす必要がある。加熱装置を用いて摂氏1億度以上の高温プラズマをつくり、ここで重水素とリチウムから生成した三重水素(トリチウム)という2つの原子核を毎秒1000キロメートル以上の高速で衝突させて核融合反応を起こすという仕組みだ。

続きはソースで

https://www.newsweekjapan.jp/stories/assets_c/2018/11/matuoka1119a-thumb-720xauto-146408.jpg
China Makes Breakthrough in Artificial Sun Research https://youtu.be/TLI9TDEy7Y0


https://www.newsweekjapan.jp/stories/world/2018/11/71-3.php
ダウンロード (2)


引用元: 中国の核融合実験装置(人工太陽)で太陽の約7倍にあたる1億度を達成[11/20]

中国の核融合実験装置(人工太陽)で太陽の約7倍にあたる1億度を達成の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/07(水) 22:20:01.12 ID:CAP_USER
■「血液型」ではなく「全身型」が正しい

血液型とは、あくまで「血液」だけの「タイプ」だと思っている人が多いのではないだろうか。それは、正しいようで正しくない。

感染免疫学・寄生虫学・熱帯医学を専門とし、『血液型の科学』(祥伝社) をはじめ、血液型に関する著作のある藤田紘一郎教授はいう。

「ABO式血液型の決め手となるのは血液型物質ですが、これは血液中にだけに存在するものではありません。内臓からリンパ液まで、人体のあらゆるところに分布しています。とくに胃や腸には多く、血液中の何百倍もの量が存在しているのです」

血液型物質という耳慣れない言葉が出てきたが、まずは血液型発見の歴史からおさらいしてみたい。

ABO式血液型は、1901年、オーストリアのカール・ランドシュタイナーという病理学者が、血液の凝集反応から発見した。凝集反応とは、A型とB型の血液を混ぜると赤血球同士がくっついて固まるが、A型とO型ならば固まらないといった反応だ。生物の時間に実験をした人もいることだろう。

最初に血液から発見されたため「血液型」と命名されたが、その後の研究で全身に分布していることがわかったので、学者たちは「全身型」に改めようとしたそうだ。しかし、そのときにはすでに「血液型」という名称が広く浸透していたという。

血液型物質とは、血液中では、赤血球の表面に付着した糖鎖(糖の分子) だ。付着するパターンが4つあり、それによって血液型を見わける。

「赤血球の表面にA型物質をもつのがA型、B型物質をもつのがB型です。AB型はA型物質とB型物質の両方をもち、O型はどちらももちません」

また、血液型物質は、生体内で「抗体」を発生させる抗原でもある。抗体とは、病原菌や異物など、「非自己」と認識されるものが生体内に侵入したとき、それと特異的に結合して、外へ排除する役割を負うものだ。

少し端は折しょって説明すると、A型は血清中に抗B抗体をもち、B型は抗A抗体をもつ。また、AB型はどちらももたず、O型は抗Aと抗B、両方の抗体をもつ)。

抗原と抗体が出あうと、抗原抗体反応が起こる。A型とB型の血液を混ぜたときの凝集反応は、互いの抗原(血液型物質)を非自己と認識したことによる、抗原抗体反応のひとつだ。

続きはソースで

「ムー」2018年11月号 特集「血液型の科学」より抜粋)

http://gakkenmu.jp/column/17156/
ダウンロード (2)


引用元: 【ABO式血液型】免疫学から見えてきた「血液型と性格」の真実

【ABO式血液型】免疫学から見えてきた「血液型と性格」の真実の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/24(水) 19:22:27.24 ID:CAP_USER
■独自技術でサビ対策塗料の開発を手がけ、注目浴びる

2020〜30年にピークを迎えるとされるインフラの老朽化。メンテナンスの効率化は待ったなしの課題だ。京都マテリアルズのインフラ向け防錆塗料は、サビの被膜でサビを防ぐという独自の技術で注目を浴びている

 バツ印の傷がついた2枚の鋼板。左には水や酸素を遮断する樹脂を用いた通常の防錆塗料、右には京都マテリアルズ(京都市)が開発した「パティーナロック」が塗布してある。2枚の鋼板に同様に計720時間、塩水を噴霧した結果が上の写真だ。

 左の鋼板がぶくぶくと膨れ上がり、塗料の内側からサビがあふれ出ているのに比べ、パティーナロックを塗布したものは傷の奥に少し赤みが見える程度だ。なぜこんな違いが生まれるのか。

 そもそもサビとは、鉄が酸素や水と反応して酸化したものだ。塗料の被膜の傷から水や酸素が入り込むと、サビは内側で増殖し、被膜を破り傷を広げる。鉄の酸化で発生するオキシ水酸化鉄の一部が、正常な鉄を巻き込んでさらに酸化反応を起こすため、まるで細菌のようにサビが加速度的に増えていくのだ。こうして鋼材から鉄原子が剥がれて、インフラの老朽化が進む。

 パティーナロックの開発者で、京都マテリアルズの山下正人社長は「通常の防錆塗料は、10年程度でサビを削り落として塗り替える作業が必要になる」と指摘する。ただし、ボルトの周辺などはサビを完全に除去するのが難しい。その上から塗料を塗り直しても、内側に残ったサビが原因でメンテナンス頻度はどんどん増えてしまう。

■インフラ改修が商機

一方、パティーナロックはサビそのもので被膜をつくる塗料だ。塗料の中に含まれるアルミニウムなどの金属イオンが、内側に発生したサビが連鎖的に酸化を引き起こさないよう安定化させ、水や酸素を遮断する被膜に変えてしまう。「使われる環境にもよるが、半永久的に防錆機能を持続できる可能性がある」と山下社長は強調する。

 鉄は資源量が豊富で強度が高く、加工もリサイクルもしやすい。その特性から「金属の王」とも呼ばれ、社会インフラに欠かすことのできない存在だ。その鉄のほぼ唯一の欠点がさびやすさだ。山下社長は住友金属工業(現新日鉄住金)で耐食鋼材の研究をしていたが、サビの不思議な特性に魅せられ、1997年、姫路工業大学(現兵庫県立大学)に移ってサビの研究に没頭する。

 人工物の天敵のように思われているサビ。しかし鉄は本来、鉄鉱石という酸化された状態で自然界に存在する。つまりサビは、金属という不安定な状態に加工された鉄を、自然に返す現象とも言える。「自然の原理に抗うよりも、味方につけた方がいい」。新たな防錆に着眼した山下社長は、実用化を目指して大学を退職。防錆の共同研究をしてきた専門家らとともに2012年、京都マテリアルズを創業した。

 同じ年の末、山梨県の笹子トンネルで、9人が死亡する天井板崩落事故が発生。インフラの老朽化が注目を浴びる。特に高度経済成長期に急ピッチで建造が進んだ道路や橋などは、2020〜30年に老朽化のピークを迎えるとみられている。国土交通省によると、現状でもインフラのメンテナンスの市場規模は約5兆円。世界の推定市場規模は200兆円に上る。

 社会的な需要は大きい。基礎理論も試作品もそろった。しかし、サビ塗料の受注はなかなか決まらなかった。「学会で基礎データを披露すれば興味を抱く人は多いが、採用してくれる企業が出てこなかった」。技術系ベンチャーが陥りがちな罠に、京都マテリアルズもはまっていた。塗料を何層塗り重ねる必要があるかなど、顧客の状況に応じて施工の方法や費用をはじき出すために必要な、営業用のデータが不足していたからだ。

 そこで「すぐにでも改善策を必要としている顧客にまずは注力した」(山下社長)。離島の送電設備など、インフラが不安定で、かつ海水や風による影響で腐食の進みやすい施設に営業リソースを集中。徐々に電力会社などから試験施工を獲得していった。

続きはソースで

https://cdn-business.nikkeibp.co.jp/article/report/20150303/278209/081700029/p1.jpg
https://cdn-business.nikkeibp.co.jp/article/report/20150303/278209/081700029/p2.jpg

https://business.nikkeibp.co.jp/article/report/20150303/278209/081700029/
ダウンロード (2)


引用元: 【塗料】サビの被膜でサビを撃退、京都マテリアルズ[10/24]

【塗料】サビの被膜でサビを撃退、京都マテリアルズの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/24(水) 22:02:22.85 ID:CAP_USER
■画像:NASAが発見した「四角い氷床」
https://www.cnn.co.jp/storage/2018/10/24/5241a97e5835aba3bdc6282dd418195c/t/768/432/d/001-nasa-ice-shelf.jpg

(CNN) 米航空宇宙局(NASA)は24日までに、南極で行っていた氷河の観測中に「四角い氷床」を発見したと明らかにした。

NASAは10月16日、南極の氷河の変化について定期的に観測する「オペレーション・アイスブリッジ」の実施中、四角い氷床を発見していた。

観測に参加していた科学者のジェレミー・ハーベック氏がラーセンC棚氷のすぐ近くに浮かんでいる四角い氷床を発見した。

続きはソースで

https://twitter.com/NASA_ICE/status/1052601381712887809

CNN
https://www.cnn.co.jp/fringe/35127509.html
https://twitter.com/5chan_nel (5ch newer account)
ダウンロード (8)


引用元: 【画像】米NASA、自然にできた「四角い氷床」発見 南極での観測中[10/24]

米NASA、自然にできた「四角い氷床」発見 南極での観測中の続きを読む
スポンサーリンク

このページのトップヘ