理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

合成

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/04/15(土) 00:08:44.83 ID:CAP_USER
名古屋大学の研究チームが、「カーボンナノベルト」と呼ばれる炭素分子の合成に世界で初めて成功したことが分かりました。

 カーボンナノベルトの合成に成功したのは、名古屋大学大学院理学研究科の伊丹健一郎教授の研究グループです。

 カーボンナノベルトは炭素原子が、丸いベルト状に連なった構造を持つ分子で、60年程前に提唱され、
夢の分子として世界の科学者が合成に挑んできましたが、これまで成功していませんでした。

  「新しい炭素が見つかると 新しい科学・技術への応用が開けると、歴史が証明している。
  誰も予想していなかった物性、新機能が潜んでいるのではないかと、期待している」
 (名古屋大学大学院 伊丹健一郎教授)

 今回の合成成功で、次世代材料として注目される、カーボンナノチューブの高性能化にもつながることが期待されています。
https://headlines.yahoo.co.jp/hl?a=20170414-00002397-cbcv-sctch
ダウンロード (2)


引用元: 【物理】名大チームがカーボンナノベルト合成に成功©2ch.net

名大チームがカーボンナノベルト合成に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/04/15(土) 01:32:39.33 ID:CAP_USER
新規人工インスリンの化学合成に成功

 東北大学は4月11日、ウシ膵臓由来の天然のインスリンに含まれるジスルフィド結合のひとつをジセレニド結合に置換した新規人工インスリン「セレノインスリン」の化学合成に成功したと発表した。
この研究は、東海大学理学部化学科の荒井堅太講師および岩岡道夫教授、東北大学学際科学フロンティア研究所(多元物質科学研究所兼任)の奥村正樹助教、多元物質科学研究所の渡部聡研究員および同研究所(生命科学研究科および理学研究科化学専攻兼任)の稲葉謙次教授、大阪大学蛋白質研究所の北條裕信教授らの共同研究チームによるもの。同研究成果は、ドイツの国際化学誌「Angewandte Chemie International Edition」電子版に4月10日付けで掲載されている。

 糖尿病患者にとって、インスリン製剤は命をつなぐ唯一の薬剤である一方、高頻度での皮下投与は肉体的・精神的な負担が大きい。
創薬分野では、こうした患者の負担をできるだけ軽減しようと、長時間にわたって体内で循環・作用し、インスリンの基礎分泌を補助する新規持効型インスリン製剤の開発が大きな課題のひとつとなっている。

 投与後に血流によって体内を循環したインスリンは、最終的に腎臓内でインスリン分解酵素(Insulin Degrading Enzyme; IDE)によって分解され尿として排出される。今回の研究では、このIDEに対して高い分解耐性を示すインスリンを人工的に作成することができれば、長時間体内を循環する新しいタイプの持効型インスリン製剤の開発につながると考えたという。

 インスリンは2本の異なるポリペプチド鎖のA鎖およびB鎖が、硫黄(S)原子同士のジスルフィド(SS)結合によって安定化されており、A鎖とB鎖からインスリンを得ようとしても鎖内のSS結合が優先して機能してしまうため、本来の目的のインスリンはほとんど得られない。

続きはソースで

https://www.m3.com/open/clinical/news/article/520399/
ダウンロード


引用元: 【医療】新規人工インスリンの化学合成に成功©2ch.net

新規人工インスリンの化学合成に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/04/11(火) 02:00:21.89 ID:CAP_USER9
身長は遺伝で決まると言われている。
「教えて!goo」には「身長についてアンケート」という投稿があり、投稿者はその中で遺伝による身長の予測値を割り出す計算式を紹介していた。
確かに遺伝は重要な要素なのだが、もちろんそれだけではなく、栄養をしっかり摂ることも大切だ。

背を伸ばすために必要な栄養素には何があるのか、管理栄養士に聞いた。
あわせて牛乳を飲めば背が伸びるという都市伝説の真偽についても教えていただくことにした。

■お母さん必見!毎日の食事に取り入れたい食品例はコチラ

お話を伺ったのは、一般社団法人健康栄養支援センターの臨床栄養部部長、加藤里奈さん。

「身長を伸ばすための骨の成長には多くの栄養素が関わっていて、カルシウム(Ca)のほかにも、たんぱく質やビタミンD(VD)、ビタミンK(VK)、マグネシウム(Mg)や亜鉛などが挙げられます。
骨の土台となるコラーゲンはたんぱく質からできています。Caはコラーゲンを硬くする役割があり、VDはCaの吸収を促進します。
VKには、コラーゲンと同じく骨の基質となるオステオカルシンというたんぱく質の合成を助ける働きがあります。Mgや亜鉛は骨の強化・再生を助けます」(加藤さん)

ビタミンDは食事からだけでなく、日光浴により皮膚でも合成されるので、30分~1時間程度の日光浴をするとよいそうだ。

「このように、骨の成長には多くの栄養素が関わるため、毎日の食事では、主食(炭水化物源)・主菜(たんぱく質源)・副菜(ビタミン・ミネラル源)を基本に、なるべく多くの食材を摂りましょう」(加藤さん)

続きはソースで

http://s.eximg.jp/exnews/feed/Goowatch/Goowatch_a228e4ee1ed8e2f6ba39f78180f7aaed_f89d.jpg
http://www.excite.co.jp/News/net_clm/20170410/Goowatch_a228e4ee1ed8e2f6ba39f78180f7aaed.html

images


引用元: 【生活の知恵】身長を伸ばすにはどうしたらいい?「牛乳をたくさん飲むと背が伸びる」は本当?★2 [無断転載禁止]©2ch.net

【生活の知恵】身長を伸ばすにはどうしたらいい?「牛乳をたくさん飲むと背が伸びる」は本当?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/03/27(月) 14:09:56.39 ID:CAP_USER
2017.3.27 13:20
原子番号113番の元素「ニホニウム」を発見した理化学研究所のチームが、119、120番の
新元素の合成に向けた実験を開始したことが分かった。代表の森田浩介グループディレクター(九州大教授)が明らかにした。

 森田氏は新しい実験について「これまでの延長線上にあるが、さらに難しい仕事になると思うので、淡々とやらなければならないと思っている」と語った。

 ニホニウムはエネルギーが比較的低い核融合反応を使って合成したが・・・

続きはソースで

http://www.sankei.com/life/news/170327/lif1703270014-n1.html?view=pc
ダウンロード


引用元: 【科学】 理研、「新元素」の合成実験開始 119、120番に向けて [無断転載禁止]©2ch.net

理研、「新元素」の合成実験開始 119、120番に向けての続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/03/08(水) 00:17:10.71 ID:CAP_USER
ダイコンの辛み成分を作り出す遺伝子を発見-新しい加工品の創出に適した品種育成へ-

ダイコンの食味を特徴付ける辛み、たくあんの黄色やにおいは、グルコシノレート(カラシ油配糖体)の一種であるグルコラファサチン(4-メチルチオ-3-ブテニルグルコシノレート:4MTB-GSL)の分解産物によりもたらされます。
グルコラファサチンを全く含まず辛み成分の質が変化した突然変異体の存在が知られていましたが、この成分を合成する鍵酵素は不明でした。
2014年に東北大学大学院農学研究科の北柴大泰准教授らがダイコンのドラフトゲノム情報を発表したことから、グルコラファサチン合成酵素の同定に向けた研究が加速し、農業・食品産業技術総合研究機構(以下、農研機構)野菜花き研究部門の柿崎智博主任研究員と北柴大泰准教授らによって、グルコラファサチン合成酵素遺伝子が発見されました。
この研究の詳細は米国植物生物学会誌「Plant Physiology」に掲載されました。

続きはソースで

▽引用元:東北大学 2017年3月 7日 09:00
http://www.tohoku.ac.jp/japanese/2017/03/press20170303-01.html

一般のダイコンでは、今回発見したGRS1遺伝子が働くことで辛み、たくあん臭、黄変が生じる。
一方、GRS1遺伝子の機能が欠損すると、辛み組成が変化し、臭いも黄変も生じない。
そのため、突然変異体の利用により新たな加工品開発が期待できる。
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press20170303_01.jpg

ダウンロード (2)


引用元: 【植物/遺伝子】ダイコンの辛み成分を作り出す遺伝子を発見 新しい加工品の創出に適した品種育成へ/東北大など©2ch.net

ダイコンの辛み成分を作り出す遺伝子を発見 新しい加工品の創出に適した品種育成へ/東北大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/02/19(日) 23:49:21.96 ID:CAP_USER
狙った臓器で金属触媒反応を実現
-体内の疾患部分で薬を直接作る研究に大きな一歩-

有機合成化学の分野では、薬などさまざまな分子を自在に合成するために、多くの金属触媒が開発されてきました。
近年、特に遷移金属触媒を用いた新しい有機合成反応が盛んに研究されています。
例えば、ルテニウム触媒を用いた野依博士らの不斉還元反応、グラブス博士らのメタセスシ反応、パラジウム触媒を用いた鈴木博士、宮浦博士の鈴木・宮浦カップリング反応はノーベル化学賞を受賞しています。

もし金属触媒による有機反応を体内で行うことができれば、患者体内の狙った臓器で速やかに薬を現地合成することができ、副作用を軽減することができるかもしれません。
一般的に金属触媒反応はフラスコ内で、無水かつ反応を妨げる分子がない条件下で行われます。
しかし、体内には、水、血清、細胞、タンパク質、糖鎖、脂質などさまざまな分子が混在するため、金属触媒は活性を失い、特定の部位で効率的に反応を進行させることは不可能だと考えられてきました。

今回、理研を中心とする国際共同研究グループは、「糖鎖クラスター」を「3価の金(Au3+)触媒」の“運び屋”として利用し、狙った臓器で選択的に金属触媒反応を行うことを考えました。
まず、末端にシアル酸を持つ糖鎖クラスターを金触媒に結合し、“金の運び屋”を合成しました。
これをヌードマウスに静脈注射したところ、30分以内に金触媒は肝臓の表面に植え付けられました。
続いて、目的の有機反応の基質である「プロパルギルエステル」に蛍光基を付けた分子を静脈注射しました。
この分子は血液中を通って体全体を巡りますが、前もって植え付けられていた金触媒のある肝臓に到達すると、その肝臓表面にあるリジン残基などの「アミノ基」との間で、「アミド化反応」を起こしたことが蛍光イメージングにより分かりました。
次に、末端にガラクトースを持つ糖鎖クラスターを金触媒に結合し、これを金の腸管への運び屋として、同様の実験を行いました。その結果、今度は腸管の表面でアミド化反応を起こしましたことが分かりました(図参照)。

本手法を用いて特定の臓器で金属触媒反応を起こせば、がんなどの疾患部位で直接、薬などの生理活性分子を効率的に合成できる可能性があります。
今後、ドラッグデリバリーシステムに基づいた有機反応による創薬の実現に貢献すると期待できます。

続きはソースで

▽引用元:理化学研究所 60秒でわかるプレスリリース 2017年2月15日
http://www.riken.jp/pr/press/2017/20170215_1/digest/
ダウンロード


引用元: 【有機合成化学】狙った臓器で金属触媒反応を実現 体内の疾患部分で薬を直接作る研究に大きな一歩/理化学研究所©2ch.net

狙った臓器で金属触媒反応を実現 体内の疾患部分で薬を直接作る研究に大きな一歩/理化学研究所の続きを読む
スポンサーリンク

このページのトップヘ