理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

品種

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/18(水) 18:02:03.94 ID:CAP_USER
ヨルダンでおよそ14,400年前のパンのかけらが見つかった。人類が農耕を始める4,000年も前の話だ。
いままで発見されたパンとしては世界最古なうえに、
人類は農耕文化を築き上げる前からすでにパンを食べていたことを裏付ける貴重な手がかりとなりそうだ。

ヨルダンの首都アンマンから北東の方角に130キロメートルほど離れたShubayqa 1遺跡。
そのかまどの底で発見された24片のパンはいずれも数ミリにしか満たないかけらばかりで、焦げて炭のようになっていた。
それらを強力な電子顕微鏡で調べた結果、
今でも中東やインドなどで食べられている平たい円形のパンの一部だったことが判明したそうだ。

Shubayqa 1遺跡にはナトゥフ文化と総称される狩猟採集民が暮らしていたことがわかっており、
パンが作られた時代にまだ農耕は始まっていなかった。このことから、
Shubayqa 1に住んでいた中石器時代人はおそらく野生の穀物類を採取し、脱穀してから粉を挽き、
それに水分をくわえてこねてからかまどで焼いていたと考えられる。

品種改良が重ねられた現代のパンコムギに比べたら、その祖先であるヒトツブコムギ、
カラスムギやオオムギの作物近縁野生種(crop wild relative)は穂が短く、粒も小さくて実りが少なかった。
それを野山で摘み取ってふるいにかけ、粉にしてからパンを作る一連の作業は、
おそらく現代の常識で考えたら恐ろしく手間がかかったに違いない。

これだけの手間をかけてでもパンを作りたかった背景には、おいしさや食べやすさはもちろんのこと、
なにか特別な食べ物として重宝されていた可能性が高いという。

続きはソースで

https://dps68n6fg4q1p.cloudfront.net/wp-content/uploads/2018/07/17155122/1800x1505_oldestbread_microscopy.jpg
■パンが見つかったかまどの跡
https://dps68n6fg4q1p.cloudfront.net/wp-content/uploads/2018/07/17155016/1500x998_oldestbread_hearth.jpg
https://dps68n6fg4q1p.cloudfront.net/wp-content/uploads/2018/07/17165627/1280x851_oldestbread_bread.jpg

https://www.discoverychannel.jp/0000028391/
ダウンロード


引用元: 【考古学】〈画像〉ヨルダンの遺跡から世界最古のパン発見、農耕が始まる4千年も前から人類はパン好きだった[07/18]

〈画像〉ヨルダンの遺跡から世界最古のパン発見、農耕が始まる4千年も前から人類はパン好きだったの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/22(金) 00:24:58.82 ID:CAP_USER
2018年06月21日 07時44分

狙った遺伝子を改変する「ゲノム編集」技術を活用し、芽などに毒を含まないジャガイモの商用化につながる手法を理化学研究所や大阪大などのチームが開発した。来年度にも野外での試験栽培を始め、5年以内の商用化を目指す。広島市で開かれた日本ゲノム編集学会で20日、発表した。

ゲノム編集による品種改良は、人工的に作った外来遺伝子を細胞核に導入し、作物の遺伝子を改変する手法が主流だ。

続きはソースで

http://www.yomiuri.co.jp/science/20180621-OYT1T50022.html
ダウンロード (2)


引用元: 【遺伝子】ジャガイモの芽、ゲノム編集で無毒に…阪大など

ジャガイモの芽、ゲノム編集で無毒に…阪大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/08(金) 17:19:11.41 ID:CAP_USER
 東京大学は2018年5月18日、豊田中央研究所、トヨタ自動車、理化学研究所と共同で、生物のゲノムDNAを大規模に再編成して形質の改良を著しく効率化する新技術の開発に成功したと発表した。
同大学大学院総合文化研究科 教授の太田邦史氏らの研究グループによる成果となる。

 研究では、多くの遺伝子が関わる複雑な形質を高速で改良できるゲノム改良技術「TAQingシステム」を開発。
従来の交配による品種改良や放射線や変異源処理による品種改良と異なる方法で大規模にゲノムDNAを変化させ、複合的な新形質を効率よく得られる。

 具体的には、DNA切断活性を温度で調節できる高度好熱菌由来のDNA切断酵素「TaqI」を生細胞内に導入。
細胞を一時的に加温して活性化させ、同時多発的に細胞内のDNAを切断、再結合させ、効率的に多数の遺伝子が関わる複雑な形質を改良する。

続きはソースで 

■画像一覧
ゲノム改良技術「TAQingシステム」の概要
http://image.itmedia.co.jp/mn/articles/1806/08/mn_medical_18052404a.jpg
「TAQingシステム」で改良に成功したバイオエタノール産生酵母
http://image.itmedia.co.jp/mn/articles/1806/08/mn_medical_18052404b.jpg
倍数性の大きいシロイヌナズナで「TAQingシステム」を実施したことによるゲノムDNAの再編成
http://image.itmedia.co.jp/mn/articles/1806/08/mn_medical_18052404c.jpg

関連リンク
生物の形質改良を加速する新しいゲノム改良技術の発明 | 理化学研究所
http://www.riken.jp/pr/press/2018/20180522_2/

http://monoist.atmarkit.co.jp/mn/articles/1806/08/news097.html
ダウンロード (1)


引用元: 【ゲノム編集】生物の形質改良を加速する新しいゲノム改良技術を開発[06/08]

【ゲノム編集】生物の形質改良を加速する新しいゲノム改良技術を開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/03/16(金) 09:17:37.84 ID:CAP_USER
■「酸蝕症」のリスク因子として上位に挙がる「ワイン」

 ビジネスにおいて、いつの時代でも重要なのは、人との出会いや繋がりである。

 特に、組織の垣根や国境を越えてビジネスを展開する現代のグローバル社会において、良好な人間関係の構築は、仕事を円滑に進めるのに加えて、新たなビジネスチャンスを生みだす可能性を広げる基盤となることから、決して欠かすことはできない。

 そうした人と人との出会いのきっかけや、繋がりを深めたりするコミュニケーションツールの一つとして最適なのが、“ビジネスの潤滑油”としても賞される「ワイン」である。

 ワインは原料となるブドウの種類も豊富で、たとえ同じ品種であっても国や生産者、また生産された年によっても全く別物に変わる、話題に事欠かない奥深いお酒だ。

 ワインがあるだけでその場は華やかになり、ビジネスの話もより一層盛り上がる、こうしたワインの効用について強調するビジネスマンは、経営者をはじめとして枚挙に暇がない。

このように世界中のビジネスマン同士の交流の場には欠かせないお酒となったワインであるが、筆者の専門である歯科の領域において、う蝕(虫歯)、歯周病に次ぐ第三の歯科疾患と言われているTooth wear (トゥース・ウェアー)と深い関係がある。

 Tooth wearとは、咬耗、摩耗あるいは酸蝕によって歯の表面の正常な構造、歯質が失われた状態のことを言う。
その中でも、酸性の飲食物や胃液などの「酸」によって歯質が薄くなっている状態のことを、「酸蝕症」と呼ぶ。

 以前は酸蝕症というと、塩酸や硫酸、硝酸などを扱う工場において酸のガスやミストが直接歯に触れて表面が溶ける職業病と捉えられていた。

 しかし、最近では一般の人の口の中にも高い頻度で見られるようになってきている。
酸蝕症はゆっくり進行し、また溶ける範囲が広く浅いために、重症化するまでは気がつかない場合も多いのだが、驚くべきことに近年の疫学的調査から、成人の4人に1人もの人が酸蝕症であることが分かってきたのだ。
そして何より、その酸蝕症のリスク因子として、数ある飲料の中でも上位に挙がってくるのが、「ワイン」なのである。

■酸蝕症が起こるメカニズムワインがリスク因子として高い理由

 そこで、まず酸蝕症が起こるメカニズムについて、そしてワインがどうして酸蝕症における高いリスク因子となりうるのかについて説明しよう。

コーラやサイダーなど炭酸飲料を飲むと“歯が溶ける”ということは感覚的に理解されているように思うが、事実、歯を酸性の飲料水に長く浸しておくと、歯は溶けてしまう。
同様のことが日常、我々の口の中でも起こっている。 

続きはソースで

関連ソース画像
http://dol.ismcdn.jp/mwimgs/c/d/670m/img_cd4181074278e39466da854877082e5d50574.jpg

ダイヤモンド・オンライン
http://diamond.jp/articles/-/163465
images (1)


引用元: 【歯学】ワインのだらだら飲みで「歯が溶ける」は本当か[03/15]

【歯学】ワインのだらだら飲みで「歯が溶ける」は本当かの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/03/04(日) 11:16:41.30 ID:CAP_USER
林野庁が花粉症の原因物質、スギ花粉を減らそうと本腰を入れたのは今から10年ほど前。
現状はどうなっているのでしょうか?そして効果が現れるのはいつになるのでしょうか?

■「無花粉スギ」「少花粉スギ」とは?

林野庁が2007年に立ち上げた「花粉発生源対策プロジェクトチーム」の方針は、スギを伐採した後に植林する「花粉症対策スギ」の苗木の供給量を大幅に拡大することでした。

まったく花粉を出さない無花粉スギ(平成28年度現在3品種)と、普通のスギの1%以下しか花粉を飛散させない少花粉スギ(同142品種)を合わせて「花粉症対策スギ」と呼ばれています。
林野庁では、無花粉スギや少花粉スギの品種開発と苗木の増産を進めてきました。

■全国の植え替えに700年かかる?

「花粉症対策スギの苗木は年間約400万本以上供給できるようになりました(平成27年度現在)。
前述のプロジェクトチームの報告書作成時には、林業の停滞などを背景に、すべてのスギ林を花粉症対策スギにするには約700年かかるとの試算値も示されていましたが、現在は林業の成長産業化を進め、植え替えも進んできています。
しかし、すべてのスギ林を花粉症対策スギに転換するのは、相当の長期間が必要なのです」と林野庁の担当者が語ります。

続きはソースで

Weathernews
https://weathernews.jp/s/topics/201802/270105/
ダウンロード (2)


引用元: 【植物】花粉症に朗報 林野庁が開発した「無花粉スギ」「雄花枯死剤」とは[03/03]

花粉症に朗報 林野庁が開発した「無花粉スギ」「雄花枯死剤」とはの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/01/22(月) 01:38:25.04 ID:CAP_USER
千葉県立農業大学校(東金市)が、野菜や果物などに付く害虫アブラムシを食べる「飛べないテントウムシ」を商品化し、今月から販売を始める。

県内の高校生が開発した、羽を樹脂で固めて飛べなくする技術を利用したもので、農薬の使用を減らす害虫防除の手段として期待されている。

同校によると、アブラムシはウイルスを媒介して病気を広めるなど、農作物に被害を与える。防除に化学合成農薬が使われてきたが、薬剤耐性があるアブラムシも出現。農薬を削減する消費者ニーズも高まっており、テントウムシの活用に注目が集まっていた。

「飛べないテントウムシ」はこれまで、飛ぶ能力の低い個体を交配する品種改良で生まれたものが販売されていた。しかし、羽を樹脂で固める技術での商品化はされていなかった。

活用するのは、テントウムシの一種「ナミテントウ」で、手芸などで使う接着道具「グルーガン」で羽に樹脂を垂らして固定する。

続きはソースで

パラフィン紙の封筒に入ったテントウムシ。農場内に置くだけで放し飼いできる
http://www.yomiuri.co.jp/photo/20180120/20180120-OYT1I50007-L.jpg
羽を樹脂で固定したテントウムシ
http://www.yomiuri.co.jp/photo/20180120/20180120-OYT1I50008-L.jpg
http://www.yomiuri.co.jp/eco/20180120-OYT1T50018.html
images


引用元: 【農業】羽を樹脂で固めた「飛べないテントウムシ」で害虫防除 1匹あたり1日約100匹のアブラムシを食べる…千葉県の高校生が開発 

羽を樹脂で固めた「飛べないテントウムシ」で害虫防除 1匹あたり1日約100匹のアブラムシを食べる…千葉県の高校生が開発の続きを読む
スポンサーリンク

このページのトップヘ