理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

回路

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/08(土) 07:19:38.18 ID:CAP_USER
東芝、AIで脳の「海馬」再現 産業用ロボなど活用へ
2019/5/27 16:32
著作:日本経済新聞

 東芝と米ジョンズホプキンス大学は27日、脳の機能を小型な人工知能(AI)で再現することに成功したと発表した。
 脳で空間認知をつかさどる「海馬」の一部機能をチップや制御回路を組み合わせハードウエアで再現した。
 小型で低電力の装置で高度な情報処理ができるようになるため、インフラ点検などを手掛ける産業用ロボや自動運転の分野への活用が見込まれる。

 ジョンズホプキンス大学が持つ脳の神経細胞を忠実に再現する神経回路の設計技術と、東芝の回路実装技術を組み合わせた。

 ネズミの海馬の空間認知機能の一部を再現するAIを開発し、ほぼ同じ神経細胞の反応が再現できたという。

続きはソースで

https://www.nikkei.com/article/DGXMZO45312710X20C19A5X20000/
ダウンロード (1)


引用元: 【脳科学/工学】東芝、AIで脳の「海馬」再現 産業用ロボなど活用へ

東芝、AIで脳の「海馬」再現 産業用ロボなど活用への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/11/20(火) 12:17:00.68 ID:CAP_USER
 松浦理史 iPS細胞研究所博士課程学生、齊藤博英 同教授らの研究グループは、合成RNAを細胞に導入することで細胞の運命を精密に制御できる人工論理回路を開発しました。

 今回開発した人工論理回路では、細胞内の複数種のmiRNAを検知して入力信号とし、それぞれの論理回路(AND、OR、NAND、NOR、XOR回路)に応じ・・・

続きはソースで

図:本研究で開発した人工論理回路の概略
http://www.kyoto-u.ac.jp/ja/research/research_results/2018/images/181119_1/01.jpg

http://www.kyoto-u.ac.jp/ja/research/research_results/2018/181119_1.html
ダウンロード (5)


引用元: 細胞の運命を制御する人工RNA論理回路の構築に成功 癌細胞の死滅などに利用 京大[11/20]

細胞の運命を制御する人工RNA論理回路の構築に成功 癌細胞の死滅などに利用 京大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/22(金) 09:05:51.12 ID:CAP_USER
東京工業大学(東工大)、リコー、産業技術総合研究所(産総研)の研究グループは、60mWという低消費電力かつ15cm3という極小サイズの原子時計の開発に成功したことを明らかにした。

■今回開発された小型原子時計。内寸は33mm×38mm×9mm (出所:産総研Webサイト)
https://news.mynavi.jp/article/20190222-775307/images/001.jpg

同成果は、東工大博士後期課程3年生のHaosheng Zhang氏、同大 博士後期課程1年生のHans Herdian氏、 Aravind Tharayil Narayanan氏(元東工大博士研究員)、同大 白根篤史 助教、同大 岡田健一 准教授、リコーの鈴木暢氏(NMEMS技術研究機構)、同 原坂和宏氏(NMEMS)、同 安達一彦氏(NMEMS)、産総研の柳町真也 主任研究員(NMEMS)らによるもの。詳細は米国サンフランシスコで開催された半導体回路の国際会議「ISSCC 2019」にて発表された。

電子技術の発達に伴い、時刻の正確性に対する要求は高まるばかりだが、正確な時を刻むことが可能な原子時計、特に原子にマイクロ波を照射する共振器を持つ従来型の原子時計では、共振器の大きさでサイズが決まるため小型化が難しいという課題があった。

続きはソースで

■量子部パッケージ開発された量子部パッケージ (出所:産総研Webサイト)
https://news.mynavi.jp/article/20190222-775307/images/002.jpg

■開発されたCMOS集積回路 (出所:産総研Webサイト)
https://news.mynavi.jp/article/20190222-775307/images/003.jpg

マイナビニュース
https://news.mynavi.jp/article/20190222-775307/
images


引用元: 【半導体】省エネかつ小型の原子時計、東工大などが開発 - ISSCC 2019[02/22]

【半導体】省エネかつ小型の原子時計、東工大などが開発 - ISSCC 2019の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/01/29(火) 18:08:26.09 ID:CAP_USER
電波を直流電流に変換する装置は「レクテナ」と呼ばれ、ワイヤレス給電などで活用されています。MITが新たに開発したのは、Wi-Fiの周波数である2.4GHz、および5GHz帯に適した素材を使ったレクテナで、一般的なWi-Fiの強度である150マイクロワットの場合、40マイクロワットの電力を生み出せるとのこと。

Two-dimensional MoS 2 -enabled flexible rectenna for Wi-Fi-band wireless energy harvesting | Nature
https://www.nature.com/articles/s41586-019-0892-1

Converting Wi-Fi signals to electricity with new 2-D materials | MIT News
http://news.mit.edu/2019/converting-wi-fi-signals-electricity-0128
https://i.gzn.jp/img/2019/01/29/wifi-rectenna/01.png

レクテナは「整流器つきのアンテナ」で、アンテナで受信した電波を整流回路を通して直流電流に変換しています。電波エネルギーを発電に用いるという発想は特別に新しいものではなく、過去にいくつものレクテナが開発されています。

従来のレクテナでは、整流器にはシリコンやヒ化ガリウムが使われてきました。こうした素材でもWi-Fiの2.4GHz帯や5GHz帯はカバー可能ですが柔軟性に欠け、小さな端末を作るのには向いていても・・・

続きはソースで

https://gigazine.net/news/20190129-wifi-rectenna/
ダウンロード


引用元: 【電波を電気に変換】受信したWi-Fiを電力に変換するため新素材を使った「レクテナ」をMITが開発[01/29]

【電波を電気に変換】受信したWi-Fiを電力に変換するため新素材を使った「レクテナ」をMITが開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/01/11(金) 22:25:03.58 ID:CAP_USER
九州大学の中島欽一教授や松田泰斗助教らは、特定の遺伝子を1つ導入するだけで、脳の神経を再生させる手法を開発した。脳内にある免疫細胞の一種が神経細胞に変わった。iPS細胞など特殊な細胞を使わなくても、脳梗塞や脊髄損傷の再生医療に役立つ可能性がある。米科学誌ニューロンに10日発表した。

脳や脊髄の中にある神経回路が病気や事故で傷つくと、脳から指令を送れなくなって手足がうまく動かせなくなる。患部の周りでは、死んだ神経細胞などを取り除くためにミクログリアという免疫細胞が増え、そのままとどまる。

研究グループはミクログリアを神経細胞に変化させようと考えた。

続きはソースで

日本経済新聞
https://www.nikkei.com/article/DGXMZO39814120Z00C19A1000000/
images (1)


引用元: 【再生医療】脳神経、iPS使わず再生 1つの遺伝子導入で [01/10]

脳神経、iPS使わず再生 1つの遺伝子導入での続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/11/07(水) 13:36:47.40 ID:CAP_USER
岸川 諒子氏(産業技術総合研究所 物理計測標準研究部門)と川崎 繁男(JAXA宇宙科学研究所)らからなる共同研究チームは、窒化ガリウムダイオードとシリコン高周波整合回路を混成したHySIC(Hybrid Semiconductor Integrated Circuit)構造により、マイクロ波電力を直流電力に変換する高周波整流回路を実現し、その動作実証に世界で初めて成功しました。開発したHySICはマイクロ波で伝送した電力を効率よく直流電流に変換できることが期待され、かつ、宇宙線耐性が強く、また、小型化・軽量化が可能なデバイスです。今回動作実証したHySIC高周波整流回路を高性能化することで、人工衛星内の無線給電など将来の宇宙開発や地上応用が期待されます。

■開発したHySIC整流回路(左)と概略図(右)
http://www.isas.jaxa.jp/topics/assets_c/2018/11/20181106_fig-thumb-700xauto-5428.jpg

本研究成果は、2018年11月6~9日に国立京都国際会館(京都府京都市)で開催される2018 Asia Pacific Microwave Conference(APMC 2018)にて発表されます。

なお、本研究の一部は、一般財団法人宇宙システム開発利用推進機構からJAXA宇宙科学研究所に委託された経済産業省「太陽光発電無線送受電高効率化の研究開発」(平成26年度~平成28年度) の成果が基になっています。

IT技術の進歩と無線通信が社会インフラとして整備されつつあり、情報のワイヤレス化が急速に進んでいます。次のステップは、電力・電源のワイヤレス化、つまりコンセントやバッテリーフリーで様々な電気機器類が作動することでしょう。電力が無線で供給されるようになれば、電源ケーブルの配線が難しい場所で電気機器類を動かすことができます。また、様々な制約からバッテリーの設置やバッテリーへの充電が難しい場合でも電気機器類を使うことができるようにもなります。

考案されている無線電力伝送方法は大きく分けて三つ、電磁誘導を用いる方法、磁気共鳴・電界共鳴を用いる方法、電波で電力を伝送する方法があります。マイクロ波を用いた無線伝送技術は、電波で電力を送る方法のなかでもマイクロ波と呼ばれる波長帯の電波を用いる方法です。他の方法と違い、数m以上の長距離でも電力伝送できるというメリットがあり、様々な分野での利用が期待されています。例えば、建物内の無線電力伝送システム、EV車の充電を含め電気機器の無線充電、宇宙で太陽光発電した電力の地上への送電、IoT端末機器への電源供給などです。

そして、マイクロ波無線電力伝送は、衛星・探査機への応用も期待されています。人工衛星や探査機など宇宙機内にはガスセンサー、振動センサー、温度センサーなど多数のセンサーが取り付けられ、機体や装置の状態を常に監視しています。こういったセンサー類にケーブルで電力供給する場合、コネクターの接続ミスや破損により機器が使えなくなるおそれがあります。これを避けるために繰り返す試験は、衛星や探査機のコストを押し上げてしまいます。無線で電力を供給できれば、機器類へのケーブル設置作業が不要になりますから、衛星の製作が簡単で短期間に行えるようになり、結果的には低コスト化を実現できます。このほかにもケーブルを取り付けた場合に比べ、無線電力供給では宇宙機の形状変化の自由度が高くなるというメリットもあります。

さて、無線給電方法で電気機器を動かすためには、マイクロ波で送った電力を直流電流に変換する必要があるため、いかに効率よく直流電流に変換できるかが実用化への第一歩となります。

宇宙科学研究所 http://www.isas.jaxa.jp/topics/001945.html 
■図1 センサーへの無線給電システムの概要とHySIC整流回路
http://www.isas.jaxa.jp/topics/assets_c/2018/11/20181106_fig1-thumb-700xauto-5431.jpg

本研究では衛星や探査機搭載用の無線電力伝送システムの開発を目指し、マイクロ波の電力を効率よく直流電流に変換する回路(整流回路)の設計と製作、動作確認を行いました。整流回路でいかに効率よくマイクロ波の電力を効率よく直流電流に変換できるかによって、無線電力伝送システムの性能が決まると言っても過言ではありません。

共同研究チームは、整流回路にHySIC(Hybrid Semiconductor Integrated Circuit)技術を適用しました。HySIC技術は、共同研究チームの一員である川崎 繁男が2014年に提唱した技術で、複数の半導体を一つの回路に混成させ、一種類の半導体では実現不可能な機能を持たせることができる回路のことです。HySICは低コスト・超小型化を可能とする高周波集積回路として期待されています。

整流回路は、整流デバイス(ダイオード)・(平滑回路・)入力整合回路・負荷抵抗から構成されます。マイクロ波から直流電流へ変換するにはダイオードを用います。本研究ではダイオードとしてGaN(窒化ガリウム)を用いました。

続きはソースで
ダウンロード


引用元: 宇宙機内のセンサーに無線給電化が可能に ― 窒化ガリウム/シリコンハイブリッド高周波整流回路の動作実証に成功[11/06]

宇宙機内のセンサーに無線給電化が可能に ― 窒化ガリウム/シリコンハイブリッド高周波整流回路の動作実証に成功の続きを読む
スポンサーリンク

このページのトップヘ