理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

固体

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/22(金) 15:31:41.90 ID:CAP_USER
1981年を最後に生存が確認されていなかった大型のハチが、インドネシア・北マルク諸島で発見された。「Megachile pluto」は成人の親指ほどの大きさをもつオオハキリバチの一種で、調査隊は人間がほとんど訪れない島でメスを1匹発見し、撮影に成功した。

イギリスの博物学者、アルフレッド・ラッセル・ウォレスが1858年に発見し、「ウォレスの巨大蜂」とも呼ばれる。
https://ichef.bbci.co.uk/news/624/cpsprodpb/11F65/production/_105737537_giant_bee_v2_640-nc.png
https://ichef.bbci.co.uk/news/624/cpsprodpb/5ADF/production/_105736232_cbolt_giant_bee_sample.jpg

今年1月に調査隊がこのハチをあらためて発見しようと、インドネシアにおけるウォレスの足跡をたどり、探検旅行を再現した。

自然史カメラマンのクレイ・ボルト氏が、生きている巨大ハチの写真と動画を最初に撮影した。

「もう存在しないと思い込んでいたこの『空飛ぶブルドッグ』のような昆虫を目にして、息を呑んだ。本物の証拠が自然の中で、自分たちの目の前にいるなんて」とボルト氏は喜んだ。

「本物の固体がいかに美しくて大きいか実際に目にして、自分の頭のそばを通り過ぎていく時に巨大な羽根がぶーんと音を立てるの聞いた。素晴らしかった」

北マルク諸島でこのメスが発見されたことで、この地域の森林には希少な昆虫がまだ生息しているのではないかと期待が高まった。

続きはソースで

https://www.bbc.com/japanese/47327283
ダウンロード


引用元: 【生物】生きていた……世界最大のハチを発見 インドネシア[02/22]

生きていた……世界最大のハチを発見 インドネシアの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/12/16(日) 14:41:57.21 ID:CAP_USER
東北大学と東京大学のグループは、これまでにみつかっていない構造をした固体を発見した。ある方向から見ると原子は結晶のように規則正しく並んでいるが、別の方向から見るとバラバラだった。新しい材料開発につながる成果だという。

固体ではダイヤモンドのように原子が周期的に規則正しく並ぶ「結晶」と、ガラスのようにランダムに並ぶ「アモルファス」、周期的ではないが規則正しく並んだ「準結晶」の3つの状態が知られている。今回観察した固体はどれにも属さず、幾原雄一東北大教授は「第4の固体だ」と唱えている。

続きはソースで

関連link
東北大ら,周期性とランダム性を持つ新原子構造を発見
http://www.optronics-media.com/news/
新構造「第4の固体」発見 東北大と東大、特異な物質
https://r.nikkei.com/article/DGKKZO38943270U8A211C1MY1000

日本経済新聞
https://www.nikkei.com/article/DGXMZO38763280Q8A211C1000000/
ダウンロード (2)


引用元: 東北大・東大、周期性とランダム性を持つ新原子構造の「第4の固体」発見 結晶の境目に新構造[12/11]

東北大・東大、周期性とランダム性を持つ新原子構造の「第4の固体」発見 結晶の境目に新構造の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/11/30(金) 14:46:11.48 ID:CAP_USER
「イプシロンロケット4号機」を2019年1月17日に打ち上げると文部科学省が明かしたことを、NHKニュースなど各種報道が伝えています。射場は鹿児島県肝付町の内之浦宇宙空間観測所です。

イプシロンロケットは3段式の固体ロケットです。第1段は「H-IIA」ロケットの固体ロケット・ブースター(SRB-A)と機器を共通化し・・・

続きはソースで

Image Credit: JAXA
■イプシロン来年1月17日打上げ
https://www3.nhk.or.jp/lnews/kagoshima/20181130/5050005027.html

https://sorae.info/wp-content/uploads/2018/11/20180116nip.jpg

https://sorae.info/030201/2018_11_30_ip.html
images


引用元: 【宇宙開発】JAXAイプシロンロケット4号機、来年1月17日打ち上げの報道 ALE人工流れ星衛星など搭載[11/30]

【宇宙開発】JAXAイプシロンロケット4号機、来年1月17日打ち上げの報道 ALE人工流れ星衛星など搭載の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/11/29(木) 02:09:27.60 ID:CAP_USER
アクセサリーや工業用品にも使用される金属「金」の融点、つまりは金が固体から液体に変化する温度は「1064度」です。常温では溶けるはずのない金ですが、これを室温で溶かす方法をスウェーデンのチャルマース工科大学の研究者たちが発見しました。

Phys. Rev. Materials 2, 085006 (2018) - Electric-field-controlled reversible order-disorder switching of a metal tip surface
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.2.085006

Scientists Have Figured Out How to Melt Gold at Room Temperature | Digital Trends
https://www.digitaltrends.com/cool-tech/gold-melt-room-temperature/

チャルマース工科大学の物理学者であるルドヴィグ・デ・ヌープ氏らによる研究チームが、室温でも金を溶かせる方法を発見しました。研究チームが発見した金を溶かす方法は、金を四角錐状の形に成型し、これに電場を付加するというもの。金に電場を付加した状態で電子顕微鏡を用いて表面を観察したところ、金の表面から2~3層の原子が融解していることが確認されました。

ヌープ氏は「我々は数層の原子層が溶け、金の原子が多く移動し、規則正しい構造を失っていることを見つけました。この発見はこれまで見つかっていなかった現象であるため、驚くべきものです。また、電場を取り除くことで表面の融解した層を固体に戻すことが可能なことも明らかになっており、これはとても興奮すべき発見です」と語っています。
https://i.gzn.jp/img/2018/11/28/how-melt-gold-room-temperature/s01_m.jpg

実際に電子顕微鏡で四角錐状の金の先っぽが融解している様子を観察。
https://i.gzn.jp/img/2018/11/28/how-melt-gold-room-temperature/s02_m.jpg

続きはソースで

Watch how gold melts at room temperature https://youtu.be/mbKuq1BAfrs



GIGAZINE
https://gigazine.net/news/20181128-how-melt-gold-room-temperature/
ダウンロード (4)


引用元: 【融解】常温で溶けるはずのない「金」を室温でも簡単に溶かす方法が発見される[11/28]

【融解】常温で溶けるはずのない「金」を室温でも簡単に溶かす方法が発見されるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/08/17(金) 14:38:54.28 ID:CAP_USER
携帯電話のバッテリーやエコカーの駆動電源に用いるため、リチウムイオン充電池の研究は今でも盛んに行われています。特に研究者から注目されているのが、安全性と生産コストに優れた「全固体リチウムバッテリー」です。ミシガン大学が、従来のリチウムイオンバッテリーの倍の性能を持ち、劣化や発火する心配もないという、新しい全固体リチウムイオン電池を開発したと報告しています。

Battery breakthrough: Doubling performance with lithium metal that doesn’t catch fire | University of Michigan News
https://news.umich.edu/battery-breakthrough-doubling-performance-with-lithium-metal-that-doesnt-catch-fire/

1980年代に発明された、金属リチウムと液体電解質を使用した「金属リチウムバッテリー」は新しい技術として大きな期待を集め、NTTが発売したショルダー型携帯電話のバッテリーに採用されることで市場に登場しました。しかし、電極表面にデンドライトと呼ばれるリチウムの塊が析出し、最終的に電池のショートによって発火する可能性がありました。当時はこの問題を解決することができず、電極に金属リチウムを使用した充電池はやがて使われなくなってしまいました。


1991年にソニー・エナジー・テックが販売したリチウムイオンバッテリーは、電極に使うグラファイト(黒鉛)がリチウムイオンを吸収することでリチウムデンドライトの析出を防止するため、それまでの金属リチウムバッテリーに比べて安定していました。そのため、今に至るまで充電式バッテリーの主流はリチウムイオンバッテリーとなっています。

続きはソースで

https://i.gzn.jp/img/2018/08/17/lithium-solid-battery-breakthrough/a03.jpg

GIGAZINE
https://gigazine.net/news/20180817-lithium-solid-battery-breakthrough/
ダウンロード (4)


引用元: リチウムイオンバッテリーの倍以上の性能で発火の危険性がない「全固体リチウムバッテリー」の開発に成功[08/17]

リチウムイオンバッテリーの倍以上の性能で発火の危険性がない「全固体リチウムバッテリー」の開発に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/24(木) 01:54:37.24 ID:CAP_USER
氷上を滑り速さを競うスピードスケートなど、氷の上で行われるウインタースポーツは多いものです。
しかし、意外なことに「なぜ氷の上で滑るのか?」というメカニズム自体はこれまで解明されていませんでした。
ついに、マックスプランク・ポリマー研究所の研究者が古くからの謎を解明しています。

Molecular Insight into the Slipperiness of Ice - The Journal of Physical Chemistry Letters (ACS Publications)
https://pubs.acs.org/doi/10.1021/acs.jpclett.8b01188

The slipperiness of ice explained -- ScienceDaily
https://www.sciencedaily.com/releases/2018/05/180509121544.htm

「スケート靴のブレードが氷の上でなぜ滑るのか?」という疑問に対する古くからの通説的な見解は、
刃が氷を押し付けるときに高まる圧力によって氷が融けるからというもの。
「固体(氷)が液体(水)よりも密度が低い」という水の持つ珍しい特性から、氷に圧力が加わるとそれを逃がす方向で、密度の高い液体の水に変化するという熱力学的なメカニズムが働き、氷から変化してできた水によって滑るというわけです。
しかし、この考えではブレードではない靴底のような接地面積が広く比較的圧力が小さな状態でも滑ってしまうことを説明することができません。

「なぜ氷の上は滑るのか?」という疑問を解決する研究を行ったのは、マックスプランク・ポリマー研究所の永田勇樹博士らの研究チーム。
研究チームは、氷の表面上に薄くできる「層」の構造に注目し、氷が滑るときにこの層がどのように変化するかを調べました。

続きはソースで

関連ソース画像
https://i.gzn.jp/img/2018/05/23/slipperiness-of-ice/a01_m.png

GIGAZINE
https://gigazine.net/news/20180523-slipperiness-of-ice/
ダウンロード (14)


引用元: 【物理学】「なぜ氷の上は滑るのか?」という問いに対する伝統的な通説が覆される[05/23]

「なぜ氷の上は滑るのか?」という問いに対する伝統的な通説が覆されるの続きを読む

このページのトップヘ