理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

宇宙背景放射

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/08/22(水) 07:57:04.46 ID:CAP_USER
宇宙はおよそ140億年前に無から生まれ、超高温の火の玉の状態から今に至るまで膨張し続けていますが、永遠の存在ではなく、いずれ終わりがくるといわれています。
現代の物理学の観点から考えられる「宇宙の終わり」の4つの可能性について海外メディアのcuriosityが説明しています。

How Will the Universe End? Here Are 4 Possibilities
https://curiosity.com/topics/how-will-the-universe-end-here-are-4-possibilities-curiosity/

宇宙の膨張を主張する「ビッグバン仮説」は1920年代に唱えられました。その後、銀河の波長に見られる赤方偏移や宇宙背景放射など、宇宙が膨張している証拠が発見されたことで、ビッグバン仮説は定説として受け入れられました。


しかし、宇宙が変化し続けているという考えは「宇宙にも終わりがあるのではないか」という疑問を生み、多くの天文学者・物理学者を悩ませることになりました。2018年現在、宇宙の終わりについては4つの可能性が示唆されています。

◆1:宇宙の熱的死
宇宙の温度は均一ではなく、高い温度の場所もあれば、低い温度の場所も存在します。「熱は高い温度から低い温度へ移動し、その逆は成立しない」という熱力学第二法則に基づいて考えた場合、長い目で見ると宇宙全体のエネルギーは均一に近づいていくといえます。宇宙全体のエネルギーが均一になるということは「何も現象が起こらない」という「宇宙の熱的死」を意味します。


この説は「宇宙全体のエネルギーが有限である」「宇宙が永遠に膨張し続ける」という考えが前提になっています。ただし、宇宙の有限性は証明されていないため、必ずしも宇宙が熱的死を迎えるとはいえません。

◆2:ビッグクランチ
膨張を続けている宇宙が、ある時点で膨張から収縮に転じ、まるでぱんぱんに膨らんだ風船から空気が抜けるようにしぼみ、最終的に無次元の特異点に収縮してしまうという考え方が「ビッグクランチ」です。この特異点は宇宙の終わりだけではなく、新しい宇宙の始まりに繋がるのではないかと考える科学者も存在します。

続きはソースで

https://i.gzn.jp/img/2018/08/22/universe-end-possibility/a01.jpg
https://gigazine.net/news/20180822-universe-end-possibility/ 
ダウンロード (1)


引用元: 【物理学】「宇宙の終わり」について現代の物理学から予想される4つの可能性とは?[08/22]

「宇宙の終わり」について現代の物理学から予想される4つの可能性とは?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/03/14(土) 15:00:03.00 ID:VbwaZtlP*.net
最近発見された天の川銀河の伴銀河の1つである「レチクル座2」から、ガンマ線が初めて検出された。このガンマ線は、長い間理論的に予測されてきたダークマター粒子の対消滅の証拠ではないかと考えられている。

画像
http://www.astroarts.co.jp/news/2015/03/13reticulum2/attachments/reticulum2.jpg
※矮小銀河「レチクル座2」の方向からのガンマ線放射。明るさはガンマ線の強さを示している(提供:NASA/DOE/Fermi-LAT Collaboration/Geringer-Sameth & Walker/Carnegie Mellon University/Koushiappas/Brown University)

「ダークマターを探すにあたり、矮小銀河からのガンマ線は、強力な証拠の1つと長い間考えられてきました。どうやら私たちは初めてその証拠を検出したようです」(Koushiappasさん)。

ダークマターの正体はいまだわかっていないが、その存在は銀河の回転や宇宙背景放射のゆらぎから明らかになっており、この宇宙に存在する物質の約80%を占めていると考えられている。

「ダークマターを重力的に検出しても、その粒子としてのふるまいについては、ほとんど何もわかりません。私たちは今回、“ダークマターが粒子としてふるまう”ことを示す、重力によらない検出ができたかもしれないのです」(Walkerさん)。

ほとんど相互作用を起こさない粒子「WIMP」は、ダークマター候補の1つだ。WIMPのペアが出会うと対消滅して高エネルギーのガンマ線が放射されるので、銀河の中心のようにWIMPが大量にあると考えられる場所からは多くのガンマ線放射が見られると考えられる。

宇宙にはブラックホールやパルサーなど高エネルギーを放射する天体が他にも多く存在するため、WIMPからのガンマ線と区別するのが難しい。
その点、矮小銀河にはWIMP以外のガンマ線発生源が存在しないと考えられているので区別しやすい。矮小銀河はダークマターの粒子探しにおいて重要な天体ということだ。今後レチクル座2を詳しく調べることで、隠れたガンマ線源の正体が明らかにされるかもしれない。

※注釈:
伴銀河→大きな銀河の周囲を公転する銀河
ダークマター→計算上宇宙にある筈だけど今の所未観測な謎の物質
パルサー→高速で自転して規則正しい電波を発する星

(記事の続きや関連情報はリンク先で)

01


引用元:AstroArts http://www.astroarts.co.jp/news/2015/03/13reticulum2/index-j.shtml

引用元: 【宇宙】 天の川銀河の伴銀河から発せられたガンマ線、ダークマター粒子の対消滅の証拠である可能性が [AstroArts]

天の川銀河の伴銀河から発せられたガンマ線、ダークマター粒子の対消滅の証拠である可能性がの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/01/31(土) 18:33:10.53 ID:???.net
掲載日:2015年1月31日

 百三十八億年前に宇宙が誕生した直後の「重力波」の痕跡をとらえたとした米研究チームの昨年三月の発表は誤りだったと、欧州宇宙機関(ESA)などの国際研究チームが三十日発表した。

◆ノーベル賞級成果 お預け

 発表後にデータの解釈に疑問が示され、専門家らが検証していた。重力波は、物理学者アインシュタインが存在を予言。宇宙が急激に膨張したとする「インフレーション理論」を裏付けるとして観測計画が進み、確認されればノーベル賞級ともいわれるが、今回はお預けになった形だ。

 米チームは、南極にあるBICEP2望遠鏡がとらえた「宇宙背景放射」と呼ばれる電波を分析、特徴的なパターンを発見し、これが宇宙急膨張の際の重力波によって生じた名残だと昨年三月に発表した。

 だがこのパターンが銀河のちりの影響である可能性が浮上。BICEP2のデータに加え、ESAの宇宙望遠鏡が観測したより広範囲のデータを、国際チームが分析し、ちりの影響に間違いないとの結論が出た。

 インフレーション理論は一九八〇年代初めに、佐藤勝彦自然科学研究機構長らが提唱した。

 <重力波> 地震のときに地盤のゆがみが地震波となって伝わるように、空間のゆがみが波となって伝わる現象。
宇宙が誕生した直後、インフレーションと呼ばれる急激な膨張が起き、そのときの空間のゆがみの痕跡が電波の渦になって今も宇宙全体に広がっていると考えられている。その痕跡をとらえれば本当にインフレーションが起きていた証拠になる。宇宙誕生の謎を解く手がかりが得られるため、日米など各国が観測競争を繰り広げている。

続きはソースで

<参照>
JPL | News | Gravitational Waves from Early Universe Remain Elusive
http://www.jpl.nasa.gov/news/news.php?feature=4469

<記事掲載元>
http://www.tokyo-np.co.jp/article/national/news/CK2015013102000259.html

引用元: 【宇宙物理】「重力波の痕跡」は誤り 銀河のちり影響 米の研究を否定

【悲報】「重力波の痕跡」は誤り 銀河のちり影響 米の研究を否定の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 名無しさん@お腹いっぱい。 2012/09/21(金) 23:01:51.72 ID:43dHwTSV

みんなで勉強しようぜ



ブラックホールについて勉強会の続きを読む
スポンサーリンク

このページのトップヘ