理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

安定

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/12/10(木) 21:59:34.44 ID:CAP_USER.net
共同発表:電圧書込み方式不揮発性メモリーの安定動作の実証と書込みエラー率評価~超低消費電力の電圧書込み型磁気メモリー「電圧トルクMRAM」の実現に道筋~
http://www.jst.go.jp/pr/announce/20151210/index.html


ポイント
不揮発性メモリーMRAMの新しい書込み方式「電圧書込み」の安定動作を実証。
実用上重要な書込みエラー率の評価法を開発、実用化に必要なエラー率実現に道筋。
電圧書込み型の不揮発性メモリーによる情報機器の超低消費電力化の可能性。


国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)スピントロニクス研究センター【研究センター長 湯浅 新治】
電圧スピントロニクスチーム 塩田 陽一 研究員は、電圧を用いた磁気メモリー書込みの安定動作を実証し、実用化に必要な書込みエラー率注1)を実現する
道筋を明らかにした。

非常に薄い金属磁石層(記録層)をもつ磁気トンネル接合素子(MTJ素子)注2)にナノ秒程度の極短い時間電圧パルスをかけると、磁化反転注3)を誘起できる。これを利用すると磁気メモリーへの情報の書込みができる。今回、この電圧書込み方式の安定動作を実証し、また書込みエラー率の評価法を開発して、エラー率を4×10-3と評価した。

さらに、実験結果を再現できる計算機シミュレーションを用いて、磁気摩擦定数注4)の低減と熱じょう乱耐性Δ注5)の向上、あるいは書込み後のベリファイ注1)の実行により、メモリー用途に求められる10-10~10-15というエラー率を実現できる可能性があることを示した(下図(b))。電圧書込み方式は電流が不要なので消費電力が非常に小さくなる。今回の成果により、超低消費電力の電圧書込み型不揮発性メモリー注6)「電圧トルクMRAM注7)」の研究開発の加速が期待される。

この成果の詳細は、2015年12月10日に日本の科学誌Applied Physics Expressのオンライン速報版に掲載される。

続きはソースで

ダウンロード
 

引用元: 【技術】電圧書込み方式不揮発性メモリーの安定動作の実証と書込みエラー率評価 超低消費電力の電圧書込み型磁気メモリーの実現に道筋

電圧書込み方式不揮発性メモリーの安定動作の実証と書込みエラー率評価 超低消費電力の電圧書込み型磁気メモリーの実現に道筋の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/11/04(水) 07:48:13.62 ID:???.net
夢の「リチウム-空気電池」に向けて一歩前進 (ニュースイッチ) - Yahoo!ニュース
http://headlines.yahoo.co.jp/hl?a=20151103-00010002-newswitch-sctch

画像
http://amd.c.yimg.jp/im_sigg_.aQQKLnaX29Dhk8wbWlIw---x900-y499-q90/amd/20151103-00010002-newswitch-000-1-view.jpg
グラフェン正極での充放電の模式図(Tao Liu, Gabriella Bocchetti and Clare P. Grey)


英ケンブリッジ大などが安定性向上で数百回の充放電に成功

 重さやコストを現在の5分の1程度にできるうえ、電気自動車(EV)の走行距離をガソリン車並みに伸ばすことが可能になると言われるリチウム-空気バッテリー(リチウム-酸素バッテリー)。究極の二次電池の候補の一つともされるが、実用化に向けては課題も多い。そうした中、課題のいくつかを解決することで安定性や効率を向上させ、数百回繰り返し充電できる改良型リチウム-空気バッテリーのプロトタイプを、英ケンブリッジ大学などの研究チームが開発した。詳細は10月30日付の米サイエンス誌に掲載された。

 リチウム-空気バッテリーは、金属リチウムを負極の活物質に、空気中の酸素を正極の活物質として利用し、リチウムと酸素の化学反応で電気を作り出す。原料となる酸素は空気から取り込み、持ち運ぶ必要がないため、理論上、単位重量あたりの貯蔵エネルギーをガソリン程度にまで高くでき、現在のEVに使われているリチウムイオン電池の10倍ほどのエネルギーを蓄えられるという。

 その分、実用化も難しく、放電中に酸化リチウムが作られ、電解質が腐食したり、副生成物が電極を覆って機能を低下させしたり、といった問題が指摘されている。

 今回、ケンブリッジ大のチームが開発した手法は、リチウム-空気バッテリーの実用化に向け大きな一歩を示す成果で、その改良の一つが有機溶剤であるジメトキシエタンの電解質にヨウ化リチウムと水を加えたこと。これまでのバッテリーでは過酸化リチウムが生成して電極にこびりついてしまい、再充電を邪魔していた。

 それに対し、このバッテリーでは、リチウムイオンが正極で酸素と反応して水酸化リチウムの結晶ができるものの、水酸化リチウムはバッテリーの再充電が始まると素早く分解される(模式図参照)。

 さらに正極材料にも工夫を凝らしてある。従来のリチウム-空気バッテリーではさまざまな形状の多孔質カーボン(グラファイト)が使われることが多かったが、研究チームでは多孔質の還元型酸化グラフェンを正極に採用。原子1個分の厚みしかない炭素シートのグラフェンを酸化した後、炭素だけの状態に還元し、穴の多い多孔質にしたもので、こうすることで生成した結晶が正極に付着しにくくした。

 実際に試作したバッテリーで実験したところ、性能低下を見せながらも数百サイクルの充放電ができた。論文の筆頭著者であるケンブリッジ大化学部のクレア・グレイ教授は、現在のEVに使われているリチウムイオンバッテリーに比べ、1kg当たり少なくとも5倍のエネルギーを貯蔵できるとみている。

 ただし、商業化に向けてはまだ多くの課題が残されている。まずEVが必要とするレベルに対し、電流密度が20分の1から50分の1と十分ではない点。さらに、爆発やショートの原因となるリチウムの樹状突起が負極にできないようにする工夫や、今回の実験が純酸素の雰囲気で行われ、空気に含まれる二酸化炭素や窒素、水分などによる金属電極への影響を考慮していないことなどだ。

 そうしたことから、リチウム-空気バッテリーの効率性・安定性の向上に一定の道筋をつけた重要な研究成果ではあるが、実用的なリチウム-空気バッテリーの開発には、少なくともあと10年はかかるとみられている。

ダウンロード
 

引用元: 【技術】夢の「リチウム-空気電池」に向けて一歩前進 安定性向上で数百回の充放電に成功 英ケンブリッジ大など

夢の「リチウム-空気電池」に向けて一歩前進 安定性向上で数百回の充放電に成功 英ケンブリッジ大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/10/26(月) 21:35:37.17 ID:???.net
100℃以上の温度でのタンパク質の安定化機構を熱力学的に解明 | 理化学研究所
http://www.riken.jp/pr/press/2015/20151026_2/

画像
http://www.riken.jp/~/media/riken/pr/press/2015/20151026_2/fig1.jpg
図1 大腸菌由来CutA1の立体構造
αはαへリックス構造、βはβシート構造を示す。色分けされた3つの構造単位から成る三量体である。

http://www.riken.jp/~/media/riken/pr/press/2015/20151026_2/fig2.gif
図2 EcCutA1_0SHとその疎水性変異型の熱変性反応の可逆性
黒のカーブは1回目のDSC測定。赤いカーブは2回目の測定で、熱変性直後冷却して再度昇温し測定した。EcCutA1_0SHでは、赤と黒の2つのカーブが完全に重なっていることから可逆性を示していることが分かった。

http://www.riken.jp/~/media/riken/pr/press/2015/20151026_2/fig3.gif
図3 EcCutA1_0SHの疎水性変異型のDSCカーブ
2重変異型「EcCutA1_0SH_S11V/E61V(=Ec0VV)」は2つのアミノ酸残基のバリン(Val)置換によって変性温度が27.6℃上昇した。

http://www.riken.jp/~/media/riken/pr/press/2015/20151026_2/fig4.gif
図4 荷電性変異型の熱力学的パラメータの温度依存性
荷電性残基変異型の変性温度でのエンタルピー変化(ΔH)をプロットしている。黒と赤のカーブはEc0VV_6のΔHとTΔSの温度関数を示す。

http://www.riken.jp/~/media/riken/pr/press/2015/20151026_2/fig5.gif
図5 Ec0VV(1)とEc0VV_6(2)の変性の熱力学的パラメータの温度関数
青のカーブはエンタルピー変化、赤はエントロピー変化、黒はギブスエネルギー変化を示す温度依存曲線。


要旨

理化学研究所(理研)放射光科学総合研究センター生物試料基盤グループの油谷克英上級研究員、松浦祥悟リサーチアソシエイトらと、高輝度光科学研究センター(JASRI)、大阪大学蛋白質研究所の共同研究グループは、100℃以上の温度領域で生息する超好熱菌[1]などが産生する非常に高い熱安定性を示す超耐熱性タンパク質の熱安定性に寄与する疎水性相互作用[2](疎水性のアミノ酸残基間の相互作用)と静電的相互作用[3](荷電性のアミノ酸残基間の相互作用)の熱力学的な役割を実証的に解明しました。

タンパク質は20種類のアミノ酸が多数連なってできています。超好熱菌などが産出する超耐熱性タンパク質には、側鎖がイオン化する荷電性のアミノ酸残基(荷電性残基[4])が、好熱菌常温生物などのタンパク質に比べ高い割合で存在しています。このため、荷電性残基間の相互作用(塩結合)が、100℃以上の温度領域でのタンパク質の熱安定性に寄与していると考えられてきました。しかし、100℃以上で生物機能を発揮できる超耐熱性タンパク質の設計は、未だに実現していません。

これは100℃以上の温度領域でのタンパク質の熱安定性について熱力学に関する実験が技術的に困難なためです。また、タンパク質の安定化には疎水性相互作用が重要とされていますが、100℃以上の高い温度で熱力学的にどのような役割を担っているか実験的な検証がなされていませんでした。

共同研究グループは、高い熱安定性を持つ大腸菌由来のタンパク質「CutA1」を構成する複数のアミノ酸残基を、疎水性および荷電性のアミノ酸残基へ置換することで、変性温度を86℃から137℃まで改善することに成功しました。これにより、100℃以上の温度領域での疎水性相互作用と静電的相互作用の熱安定化に寄与する熱力学的役割を実証的に解明しました。

熱安定性の高いタンパク質は、医学・薬学などの分野で取り扱いやすいタンパク質試料として、あるいは工業分野における耐熱素材として必要とされています。今回の成果は、100℃以上の高い温度でのタンパク質の安定化を熱力学的に解明したもので、超耐熱性タンパク質の設計に理論的指針を与えると期待できます。

本研究は、日本医療研究開発機構所管の『創薬等ライフサイエンス研究支援基盤事業』の一環として行われました。また、本成果は、国際科学雑誌『Scientific Reports』に(10月26日付け)に掲載されます。

続きはソースで

ダウンロード
 

引用元: 【生化学/熱力学】100℃以上の温度でのタンパク質の安定化機構を熱力学的に解明 超耐熱化タンパク質の設計が可能に 理研

100℃以上の温度でのタンパク質の安定化機構を熱力学的に解明 超耐熱化タンパク質の設計が可能に 理研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/10/13(火) 17:53:37.76 ID:???.net
パルス電流によるスキルミオンの生成・消去に成功 | 理化学研究所
http://www.riken.jp/pr/press/2015/20151013_1/

画像
http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig1.jpg
図1 スキルミオンの模式図
各矢印は磁気スキルミオン内の磁気モーメントの向きを示している。外側の磁気モーメントは外部磁場と同じ向きを向くが、中心の磁気モーメントは反対を向く。外部磁場に対して、赤矢印が0°、黄色矢印が90°、青矢印が180°傾いている。

http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig2.jpg
図2 マンガンシリコン(MnSi)の磁気相図
(a)急冷前の磁気相図と(b)急冷後の磁気相図。磁気スキルミオン安定相を通過して急冷された場合にのみ、磁気スキルミオンが準安定相として(b)図中赤領域において観測される。

http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig3.jpg
図3 磁気スキルミオンの急冷の概念図
安定相である磁気スキルミオンを徐々に冷却すると、別の安定相(コニカル相)へと変化するが、急冷した場合はこの変化を起こすことなく、磁気スキルミオン準安定相として低温まで保持される。

http://www.riken.jp/~/media/riken/pr/press/2015/20151013_1/fig4.jpg
図4 パルス電流を用いた磁気スキルミオンの生成と消去
(a) ホール抵抗率の変化と用いたパルス電流の時系列。ホール抵抗率の高い状態が磁気スキルミオン準安定相、低い状態がコニカル安定相に対応する。(b)パルス電流を用いた磁気スキルミオンの生成・消去の繰り返し操作。


要旨

理化学研究所(理研)創発物性科学研究センター動的創発物性研究ユニットの大池広志特別研究員、賀川史敬ユニットリーダーらの研究グループ※は、パルス電流印加(短時間に瞬間的に電流を流すこと)による磁気スキルミオンの生成・消去に成功しました。

磁気スキルミオン[1]は数十ナノメートル(nm、1 nmは10億分の1メートル)程度の大きさの渦状の磁気構造で、次世代の高密度磁気メモリ素子への応用が期待されています。しかし、磁性体を数十nmの厚さの薄膜に加工しない限り、磁気スキルミオンを観測できる温度域が数ケルビン(K)幅(マンガンシリコン(MnSi)の場合、27K~29K)程度と非常に限られていました。磁性体がその温度域を外れると磁気スキルミオンは別の磁気構造へと変化し失われてしまうため、基礎・応用研究の一層の展開に向けて磁気スキルミオンを観測できる温度域の拡大は解決すべき課題となっていました。

研究グループは、パルス電流印加に伴う急加熱と急冷効果を利用することで、MnSiにおいて、これまで磁気スキルミオンが観測されないと考えられていた温度域(27Kより低温)で、磁気スキルミオンを生成できることを発見しました。さらに、磁気スキルミオン生成に用いたパルス電流とは異なる強度・幅のパルス電流を用いることで、生成された磁気スキルミオンを消去できることも実証しました。
このようなパルス電流を用いた磁気スキルミオンの生成・消去は繰り返すことができることも確認しました。これらの成果は、電流印加による磁気スキルミオンの不揮発制御[2]の新原理を実証したものと言え、今後、磁気スキルミオンメモリデバイスの実現へ向けて1つの指針を与えると期待できます。

本研究は、国際科学雑誌『Nature Physics』に掲載されるのに先立ち、オンライン版(10月12日付け:日本時間10月13日)に掲載されました。

続きはソースで

images (1)
 

引用元: 【電磁気学】パルス電流によるスキルミオンの生成・消去に成功 ナノスケールの磁気構造を書き換える新原理を実証 理研

パルス電流によるスキルミオンの生成・消去に成功 ナノスケールの磁気構造を書き換える新原理を実証 理研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/09/08(火) 23:28:09.34 ID:???.net
世界初のiPS移植から1年、加齢黄斑変性の患者「視力安定」

ダウンロード


 目の難病「加齢黄斑変性」の患者に、iPS細胞(人工多能性幹細胞)を利用した世界初の移植手術を昨年9月に実施した高橋政代・理化学研究所プロジェクトリーダーは7日、手術から間もなく1年になる患者の経過について、「腫瘍もできておらず、うまくいっている」と述べた。

 大阪市で開かれたノーベル賞受賞者を囲むフォーラム「次世代へのメッセージ」(読売新聞社主催)の講演で語った。

 患者は70歳代の女性で、昨年9月12日に本人のiPS細胞から作った網膜色素上皮の細胞シートを右目に移植した。

 高橋リーダーは、女性の視力が手術後もほとんど下がらず安定していると強調。「視力回復の見込みが少ない方だったので、下がっていないのは治療の効果と言える。患者も喜んでいる」と話した。

http://headlines.yahoo.co.jp/hl?a=20150908-00010000-yomidr-hlth
読売新聞(ヨミドクター) 9月8日(火)9時57分配信

引用元: 【再生医療】世界初のiPS移植から1年、加齢黄斑変性の患者「視力安定」

世界初のiPS移植から1年、加齢黄斑変性の患者「視力安定」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/08/04(火) 09:58:25.39 ID:???*.net
メタンハイドレート安定生産へ実験 来秋にも愛知・三重沖で

images (1)


 政府は2016年秋にも愛知・三重両県沖の深層に含まれる次世代エネルギー資源「メタンハイドレート」から天然ガスを安定生産するための実験を始める。新技術で克服し、1カ月程度の安定生産に向けた技術を確立する。同海域の埋蔵量は日本の天然ガス消費量10年分と推定され、23年度以降の商業化をめざす。

 メタンハイドレートは氷状の塊で、分解すると天然ガスの成分のメタンガスが得られ、「燃える氷」とも呼ばれる。

(公開部分ここまで)

日本経済新聞 2015/8/4
http://www.nikkei.com/article/DGKKASFS01H2X_T00C15A8MM8000/

引用元: 【資源】メタンハイドレート安定生産へ実験 来秋にも愛知・三重沖で[08/04]

メタンハイドレート安定生産へ実験 来秋にも愛知・三重沖での続きを読む

このページのトップヘ