理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

対称性

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/21(金) 07:16:10.91 ID:CAP_USER
量子重力には対称性はない ― 大栗機構長らが証明
https://www.ipmu.jp/ja/20190619-symmetry
2019年6月19日
東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)

 画像:図1. 「量子重力理論は対称性を持たない」ことを背理法で証明する図。
    もし対称性があるとすると、それは図の灰色で塗られた部分にしか作用せず、中心の黒い点のまわりの状態には変化を起こさない。
    円周を細かく分けていくと、灰色の部分をいくらでも小さくできるので、対称性には、どこにも作用しないことになる。
    これは矛盾である。(Credit:Harlow and Ooguri)
 https://www.ipmu.jp/sites/default/files/imce/medium.png

 1. 発表概要
 東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU) の大栗博司 (おおぐりひろし) 機構長は、マサチューセッツ工科大学物理学教室の Daniel Harlow 助教と共同で、重力と量子力学を統一する理論では、素粒子論の重要な原理であった対称性がすべて破れてしまうことを、ホログラフィー原理を用いて証明しました。この証明にあたっては、量子コンピューターで失われた情報を回復する鍵とされる「量子誤り訂正符号」とホログラフィー原理との間に近年発見された関係性を用いるという新たな手法が用いられました。本研究成果は、素粒子の究極の統一理論の構築に大きく貢献するものであるとともに、近年注目される量子コンピューターの発展にも寄与すると期待され、アメリカ物理学会の発行するフィジカル・レビュー・レター誌 (Physical Review Letters) に2019年5月17日付で掲載され、成果の重要性から注目論文(Editors’ Suggestion)に選ばれました。


 2. 発表内容
 宇宙が始まった当初、「電磁気力」「強い力」「弱い力」「重力」の4つの力が全て統一されていたと考えられています。ミクロの世界を記述する量子力学を基礎とした理論を用いて、「電磁気力」「強い力」「弱い力」の3つの力については統一的に説明できますが、重力を含めた4つの力も含め統一的に説明する理論については未だ研究途上の重要な課題であり、様々な面から研究がなされています。

続きはソースで

関連情報
Kavli IPMU
https://twitter.com/KavliIPMU/status/1141211169991974914
https://twitter.com/5chan_nel (5ch newer account)
ダウンロード (3)


引用元: 【量子力学/統一理論 】量子重力には対称性はない ― 大栗機構長らが証明[06/19]

【量子力学/統一理論 】量子重力には対称性はない ― 大栗機構長らが証明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/29(火) 22:28:04.68 ID:CAP_USER
オーストラリアとスイスの研究チームが"Flux Capacitor"を開発したと学術誌Physical Review Lettersに発表しました。
Flux Capacitorといえば、映画「バック・トゥ・ザ・フューチャー」シリーズに登場するタイムマシン(デロリアン)が、時間移動をするために使う"次元転移装置"のこと。チームが開発したフラックスキャパシターの回路構造もそれにそっくりです。
研究は主にオーストラリアの研究機関Centre for Engineered Quantum Systems (EQUS)と、Future Low-Energy Electronics Technologies (FLEET)が協力して行いました。

FLEETのJared Cole氏は「このデバイスは電気抵抗がゼロになる超伝導体で構成される2つの回路から構成され、そのひとつは映画に出てくるフラックスキャパシターのデザインにそっくりです」、さらに「回路に信号を通すと、磁束による量子トンネル効果と呼ばれる現象によって回路に配置したキャパシターの周りを流れます。
このとき、時間反転対称性と呼ばれる物理学的特性が破れます」と説明しています。

われわれ素人が「時間反転対称性を打ち破る」などと聞かされると・・・

続きはソースで

関連ソース画像
https://s.aolcdn.com/hss/storage/midas/4f1435bc96bf6dfdd7dc6ce33dfb24dd/206410319/main.jpg
https://s.aolcdn.com/hss/storage/midas/8e814ceb1d546e71aef76de58dfd0e8f/206410325/circulator1.gif

https://japanese.engadget.com/2018/05/29/flux-capacitor/
ダウンロード (9)


引用元: 【話題】『バック・トゥ・ザ・フューチャー』の次元転移装置?物理学者が「時間反転対称性」破るFlux Capacitorを開発

『バック・トゥ・ザ・フューチャー』の次元転移装置?物理学者が「時間反転対称性」破るFlux Capacitorを開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/03/06(火) 18:46:41.65 ID:CAP_USER
年明けの1月11日、雑誌「Nature communications」に一報の論文が発表されました。

 「Discovery of Superconductivity in Quasicrystal」。
日本語なら「準結晶中での超伝導状態の発見」とでも訳しましょうか。

 名古屋大学、豊田工業大学、東北大学、豊田理化学研究所などのグループが達成した、人類史的な価値をもつ大業績と思います

 一定の確率でノーベル賞が出て不思議ではない驚くべき成果ですが、ことさらに大メディアが騒ぎ立てたりすることはありませんでした。

 まあ、記事の編集担当デスクが理解できなければ仕方のない、いつものことですが、今回はこの「準結晶の超伝導」の何が凄いのか、簡単に解説してみたいと思います。

■準結晶とは何か?

 まず最初に「準結晶(Quasicrystal)」とは何か、から話を始めなければなりません。
ワープロに「じゅんけっしょう」と入力すると「準決勝」と変換される程度に、世間にはほとんど知られていない物質の形態と思います。

 原子分子レベルで見ると「結晶」は、ちょうど公園などにあるジャングルジムのようにアトムが規則正しく並んだ構造を取っています。

 こうした「結晶」は「並進対称性」と呼ばれる規則性を持ちます。
分かりやすい例としてオランダの版画家M.C.エッシャーの作品をリンクしておきましょう。

 例えばこの「鳥による平面の規則分割
(参照=http://www.mcescher.com/gallery/back-in-holland/regular-division-of-the-plane-with-birds/)」という作品は、ちょうど、床や壁をタイルで覆い尽くすような意味で、2次元平面を完全に充填します。

 ここで、一部を切り出して別の部分に平行移動すると、完全に重なり合う。
こういう特徴を「並進対称性」といいます。

 さて、世の中にはこういう充填とは別に、平行移動では決して重なり合わない、面や空間の充填の仕方があります。

 例えば、イスラム教のモスク建築には、壮麗な幾何学模様のタイル張りの埋め尽くしが見られます。

 いくつか例を挙げて見ましょう。

 例えばこういうもの(参照=https://en.wikipedia.org/wiki/Girih_tiles)はギリーと呼ばれます。
英文のイスラム文様のウィキペディアには、尖塔の屋根を埋め尽くす曲面パターン
(参照=https://en.wikipedia.org/wiki/Islamic_geometric_patterns)なども紹介されています。

 あるいはこんなもの(参照=http://archive.aramcoworld.com/issue/200905/the.tiles.of.infinity.htm)もある。

 最後のリンクには、こうしたモザイクの幾何学模様を数学的に整理した英国の数理物理学者ロジャー・ペンローズ
https://en.wikipedia.org/wiki/Roger_Penrose)の名が挙げられています。

 ペンローズは1974年、2種類のひし形を組み合わせて空間を充填しながら、決して平行移動では重ね合わせができないパターンを見出し発表します。

 「ペンローズ・タイル」と呼ばれるパターンで、非周期的でありながら空間を埋め尽くす特異な幾何学構造として注目を集めます。

 ペンローズとエッシャーの間には親交があり、ペンローズの見出した数理構造に影響を受けた作品をエッシャーは発表しましたが、残念ながら版画家は1972年に亡くなってしまいました。
そのためペンローズ・タイルの幾何を応用した作品は残されていません。

続きはソースで

画像:すでに様々に利用されている超電導。
写真は超電導磁石を使った独西部グライフスバルトのマックスプランク・プラズマ物理学研究所にある核融合装置「ベンデルシュタイン7-X」。
http://afpbb.ismcdn.jp/mwimgs/d/6/600w/img_d6f6919603dce4f3d888c74c10696df8201375.jpg

JBpress
http://jbpress.ismedia.jp/articles/-/52503
ダウンロード


引用元: 【物理学】ノーベル賞間違いなし、日本発「準結晶超伝導転移」[03/06]

ノーベル賞間違いなし、日本発「準結晶超伝導転移」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/08/07(日) 12:27:14.78 ID:CAP_USER
The T2K Experiment
http://t2k-experiment.org/ja/2016/08/t2k-cp-violation-search-results-presented-at-ichep-2016/
「反物質」消滅の新証拠か 高エネ研などニュートリノ実験で初観測 (産経新聞) - Yahoo!ニュース
http://headlines.yahoo.co.jp/hl?a=20160807-00000065-san-sctch
http://amd.c.yimg.jp/amd/20160807-00000065-san-000-5-view.jpg


ニュートリノの「CP 対称性の破れ」の解明に第一歩を踏み出す

T2K 実験(東海-神岡間長基線ニュートリノ振動実験)国際共同研究グループ(以下、T2K コラボレーション)は、反ミュー型ニュートリノから反電子型ニュートリノへのニュートリノ振動について、2014 年の実験開始から取得した観測実験データをまとめ、同研究グループが 2010 年から 2013 年までの実験で明らかにしたミュー型ニュートリノから電子型ニュートリノへのニュートリノ振動の結果と比較し、ニュートリノと反ニュートリノで、電子型ニュートリノへの出現が同じ頻度では起きない、すなわち、「CP 対称性の破れ」があることを示唆する結果を得ました。

「ニュートリノと反ニュートリノのニュートリノ振動の確率が違う」ということが事実であれば、万物を構成する素粒子の仲間であるクォークでは破れている「CP 対称性」がニュートリノでも破れていることを意味するともに、「宇宙の始まりであるビッグバンで物質と反物質が同数生成されたのに、現在の宇宙には反物質はほとんど存在していない」という宇宙の根源的な謎を解明するうえで大きなヒントとなります。

T2K実験では、2014年より反ニュートリノを生成する実験を開始し、2016年5月までに、ニュートリノデータとほぼ同量の反ニュートリノデータを得ることができ、これまでの全データの解析の最新結果を、8月7日(日本時間)に米国シカゴで開催される高エネルギー物理学に関する国際会議(ICHEP)にて公表するに至りました。

T2K 実験が 2010 年から 2016 年 5 月までのニュートリノビームを生成した期間のデータから、「CP 対称性の破れがない」と仮定した場合の電子型ニュートリノの予想出現回数を求めたところ、約 24 個と推定されました。それに対して、スーパーカミオカンデ検出器で実際に観測された電子型ニュートリノは 32 個と、予測値と異なっていました。

また、T2K 実験が 2014 年から 2016 年 5 月までの反ニュートリノビームを生成した期間に、「CP 対称性の破れがない」と仮定した場合の反電子型ニュートリノの予想出現数は、約 7 個でした。それに対して、スーパーカミオカンデ検出器での実際の観測では、4 個の反電子型ニュートリノしか観測されませんでした。

これらの観測数と予想値の違いに加えて、ニュートリノ振動を起こさなかったミュー型ニュートリノ・反ミュー型ニュートリノの観測数や、観測されたそれぞれのニュートリノ・反ニュートリノのもつエネルギーなどの測定値も考慮し、総合的な解析を行いました。また、原子炉ニュートリノ実験の結果も用いて推定した「CP対称性の破れがない」と仮定した場合の予想と比較し、電子型ニュートリノ出現現象に現れた「CP対称性の破れ」の大きさを測定しました。その結果、「ニュートリノと反ニュートリノで電子型ニュートリノ出現が同じ頻度で起きる」という仮説は90%の確率で棄却されました。すなわち、「ニュートリノと反ニュートリノで電子型ニュートリノ出現が同じ頻度では起きない可能性が高く、CP対称性の破れがある」ということが示唆されました。

ただし、90%という信頼度は、実験の最終結果として結論づけるには統計的に十分な有意水準とは言えません。今後データ量を増やしての検証を要しますが、ニュートリノと反ニュートリノが違う性質を持つ可能性を示唆する興味深い結果です。

現時点でのデータ収集量は、T2Kコラボレーションの当初の実験提案の約2割に到達した所です。今後、J-PARCの加速器やニュートリノビームラインの性能向上によるニュートリノビームの強度増強をはかり、より高い有意水準での「CP対称性の破れ」の検証を行なう予定です。また、T2Kコラボレーションは、J-PARCのさらなる性能向上の可能性を考慮して当初の実験提案の2.5倍のデータ(これまで取得したデータの約13倍)を収集し、さらにデータ解析の改良をすることで、ニュートリノにおける「CP対称性の破れ」を3σ(=有意水準99.7% )の信頼度で検証することを目指しています。さらに、米国NOvA実験との相互検証も可能であり、今後、数年程度のタイムスケールでニュートリノ振動の新たな知見が得られると期待できます。

images (1)
 

引用元: 【素粒子物理学】T2K 実験、CP 対称性の破れの探索に関する新たな結果をICHEP国際会議で発表 [無断転載禁止]©2ch.net

T2K 実験、CP 対称性の破れの探索に関する新たな結果をICHEP国際会議で発表の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/04/28(木) 21:52:24.77 ID:CAP_USER.net
乱雑さを決める時間の対称性を発見 | 理化学研究所
http://www.riken.jp/pr/press/2016/20160427_2/


要旨

理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。

乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証明されました。

20世紀末、ブラックホール[3]のエントロピーは、時空の対称性から導出できることが分かりました。この研究に触発され、今回、共同研究チームは、「ネーターの定理に従って保存量としてのエントロピーを導く対称性は何か?」という疑問を追究しました。具体的には、「ミクロな粒子の運動を記述する時間をずらしても、ずらす前の運動と同じ法則に従う」という対称性があるかを調べました。その結果、量子力学のプランク定数[4]を温度で割った分だけ時間をずらすように選んだときにのみ、そのような対称性が現れることが分かりました。そして、ネーターの定理をその対称性に適用することで得られる保存量がエントロピーと一致しました。この乱雑さを決める時間の対称性はこれまでにないものであり、どのような物質にも現れうる普遍的なものです。

今後、時間の対称性が導くエントロピーは、乱雑さとしてのエントロピーとは異なる方法でミクロとマクロの世界を結び付けることを可能にし、さまざまな分野に新しい視点を与えると期待できます。

本研究は、米国の科学雑誌『Physical Review Letters』(4月8日号)に掲載され、Editors’ suggestionに選ばれました。

続きはソースで

images (1)
 

引用元: 【熱力学/量子力学】乱雑さを決める時間の対称性を発見 ボルツマンの公式とネーターの定理の融合が築くミクロとマクロの架け橋

乱雑さを決める時間の対称性を発見 ボルツマンの公式とネーターの定理の融合が築くミクロとマクロの架け橋の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: とうやこちょうφ ★ 2013/11/21(木) 21:15:05.24 ID:???

東大、原子1個に記録された磁気情報を従来比10億倍に高める原理を解明

東京大学は、原子1個に記録された磁気情報を長期間保持するためのメカニズムを解明したと発表した。今回、原子1個の量子力学的な対称性を考慮することにより、情報保持時間を従来比で10億倍に高めたという。

同成果は、同大 物性研究所 ナノスケール物性研究部門の宮町俊生助教らによるもの。詳細は、英国科学誌「Nature」に掲載された。

これまで、情報記録装置の性能を向上させるため、微細化技術によって記録する磁気素子の小型化および高集積化が進められてきた。微細化がさらに進むことにより、究極的に磁気素子は、原子1個で構成される原子磁石になると考えられる。しかし、1個の原子磁石は、磁気的に不安定で情報を保持できる時間が1マイクロ秒以下と短く、実用化は困難とされてきた。

磁石の安定性は、磁気異方性エネルギーと呼ばれるエネルギー障壁によって決定する。この障壁が小さいと磁石の向きが容易に反転してしまい、磁石としての安定性は低くなる。
PCなどの電子機器に使用している"大きな磁石"はこの磁気異方性エネルギーを高めることにより安定性を確保している。しかし、磁石のサイズを原子レベルまで小さくすると、量子力学的な効果(量子トンネリング)により、エネルギー障壁を超えなくても磁石の向きが反転してしまうことが分かってきた。したがって、高い磁気的安定性を有する原子磁石の実現のためには、原子の磁気異方性エネルギーを高めるとともに量子トンネリングを抑える必要がある。

研究チームでは、2008年から金属表面上に塗布した原子磁石の安定性に関する研究を開始し、磁気異方性エネルギーは原子1個の磁石としての性質である磁気モーメントの大きさに比例することや、磁気モーメントの大きさと原子を塗布する金属表面の対称性をうまく考慮することにより、量子トンネリングを抑制できることを明らかにしていた。
今回の研究では、量子トンネリングを抑制できる六角形状の原子配列をもつ白金表面の上に希土類金属で最大の磁気モーメントを有するホルミウム原子磁石を塗布し、その情報保持時間を測定した。

ホルミウム原子磁石の情報保持時間を測定するためには、原子レベルで表面観察ができ、さらに原子磁石の磁気モーメントを検出できる手法が必要となる。そこで、条件を満たすスピン偏極走査トンネル顕微鏡(SP-STM)装置を2011年に新たに開発した。
原子磁石の磁化方向は、SP-STMの磁気シグナルを観測することにより判断できる。SP-STM磁性探針と原子磁石の磁気モーメントが平行の場合、磁気シグナルは大きく、反平行の場合、磁気シグナルは小さくなる。

SP-STM磁性探針をホルミウム原子磁石の上に配置し、磁気シグナルの時間変化を測定した結果、ホルミウム原子磁石は1つの磁気情報(上向き、下向き)を10分以上保持していることが明らかになった。観測された情報保持時間は従来の原子磁石と比較して約10億倍と著しく向上している。
原子磁石の磁気モーメントが上に向いている状態を"1"、下に向いている状態を"0"とすると、PCなどの電子機器と全く同じ方式での磁気情報の読み取りが可能になっている。

さらに、トンネル電子を介したエネルギー注入により原子磁石の向きを制御できることも分かった。このことは、原子1個に情報を書き込めることを意味している。
また、原子磁石に長時間情報を記録するためには、磁気モーメントの大きさと原子を塗布する金属表面の対称性が非常に重要であることが理論計算によっても確認された。

研究チームでは、原子1個の磁石としての性質である磁気モーメントの大きさと原子を塗布する金属表面の対称性をうまく組み合わせることによって、原子1個の情報保持時間を増大できることを明らかにした。これにより、学術的観点だけでなく、原子サイズの磁気素子を用いた次世代情報ストレージの開発や原子磁石を用いた新方式の量子コンピュータ実現の可能性が期待されるとコメントしている。

1

ソース
http://news.mynavi.jp/news/2013/11/15/345/index.html
http://www.issp.u-tokyo.ac.jp/issp_wms/DATA/OPTION/release20131114.pdf

ご依頼いただきました。
http://anago.2ch.net/test/read.cgi/scienceplus/1382193882/108



【物理】東大、原子1個に記録された磁気情報を従来比10億倍に高める原理を解明の続きを読む

このページのトップヘ