理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

常温

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/16(日) 07:26:43.28 ID:CAP_USER
期待高まる「常温核融合」、三浦工業もベンチャーに出資
https://tech.nikkeibp.co.jp/dm/atcl/news/16/052912236/
2019/05/30 12:40
日経XTECH

画像:新水素エネルギーの原理イメージ(出所:NEDO)
https://tech.nikkeibp.co.jp/dm/atcl/news/16/052912236/0529suiso1.jpg

 ボイラーおよび関連機器の製造・販売を手掛ける三浦工業は5月15日、「新水素エネルギー」を研究開発するベンチャー企業であるクリーンプラネット(東京都港区)が同日実施した第三者割当増資を引き受けたと発表した。
 出資金額および出資比率は非公表。

 新水素エネルギーとは、微小な金属粒子に水素を吸蔵させ一定の条件下で刺激を加えると投入熱量を上回るエネルギーを放出する反応システムのこと。
 通常の燃焼反応(化学反応)と比べて水素1gあたり数桁以上の大きな放熱量の報告が相次いでいる。

 何らかの核変換(元素転換)が起きていると推察され、研究者間では「凝縮系核反応」「金属水素間新規熱反応」とも呼ばれる。
 将来的に実用化された場合、太陽光や風力発電の余剰電力を使って水電解で製造した水素(軽水素)を燃料に、CO2を排出しない電力を効率的に生産できる可能性がある。

 クリーンプラネットは、2012年に設立したベンチャー企業で、2015年に東北大学と共同で設立した同大学電子光理学研究センター内「凝縮系核反応研究部門」を拠点に、新水素エネルギーの開発に取り組んでいる。

続きはソースで

関連web

30年前に世間をにぎわせた常温核融合の実現可能性が、米国Google社によって再検討され、議論を呼んでいる。
A Google programme failed to detect cold fusion ? but is still a success
https://www.nature.com/articles/d41586-019-01675-9
Google社が資金を提供した新たな研究でも、常温核融合が可能であるという証拠は得られず。
Google revives controversial cold-fusion experiments
https://www.nature.com/articles/d41586-019-01683-9
ダウンロード


引用元: 【化学】期待高まる 常温核融合 三浦工業もベンチャーに出資 凝縮系核反応[05/30]

期待高まる 常温核融合 三浦工業もベンチャーに出資 凝縮系核反応の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/10/30(火) 14:29:04.68 ID:CAP_USER
レンガは古くから家などの建築材料として使われており、今日でも世界中で広く使用されています。そんなレンガを「人間のオシッコ」を使うことで、高熱で焼き上げることなく常温で作り出すことに南アフリカの学生チームが成功したと報じられています。

World-first: Bio-bricks from urine | UCT News
https://www.news.uct.ac.za/article/-2018-10-24-world-first-bio-bricks-from-urine

ケープタウン大学の土木工学科修士課程に在籍しているSuzanne Lambert氏とVukheta Mukhari氏は、数カ月にわたって革新的な方法でレンガを作り出す方法を実験してきたとのこと。そして2人は、「バイオレンガ」と名付けられたレンガを「人間のオシッコ」を使って作り出すことに成功しました。

バイオレンガの材料となる砂には、「ウレアーゼ」と呼ばれる酵素を作り出す細菌が定着しています。ウレアーゼはオシッコの中に含まれる尿素を分解して炭酸カルシウムを作り出し、レンガを固めるとのこと。

水質工学の講師でありLambert氏の指導教官でもあるDyllon Randall博士は、「このバイオレンガを作り出すプロセスは、貝殻が作られるプロセスと似たものです」と語りました。ウレアーゼが人間のオシッコから作り出す炭酸カルシウムは、砂をあらゆる形に固めることができるそうで、一般的なレンガのような長方形だけでなく、円筒形にも砂を固めることが可能です。

「尿素を利用してレンガを固める」という発想は、数年前にアメリカの研究者が合成溶液を利用した実験を行っていました。しかし、Lambert氏は2017年に共同研究を行っていたスイス人学生のJules Henze氏との基礎研究をもとに、世界で初めて「本物の人間のオシッコ」を利用してレンガを固めることに成功しました。

一般的な焼成レンガは1400度近くの熱を窯の中で加えられ、その過程で大量の二酸化炭素を放出しますが、バイオレンガは室温に置かれた金型の中で作り出すことが可能。

続きはソースで

https://i.gzn.jp/img/2018/10/29/human-urine-bio-brick/00_m.jpg

GIGAZINE
https://gigazine.net/news/20181029-human-urine-bio-brick/
ダウンロード (1)


引用元: 【化学】人間のオシッコ(尿素+炭酸カルシウム)を使ってレンガを常温で作ることに成功[10/29]

人間のオシッコ(尿素+炭酸カルシウム)を使ってレンガを常温で作ることに成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/03/22(水) 09:56:40.36 ID:CAP_USER9
岐阜大次世代エネルギー研究センター長の神原信志教授(55)=化学工学=が、アンモニアを原料に水素を製造する装置の試作機を開発し、21日、「実用化のめどが立った」と発表した。プラズマを用いることで触媒を使わずに常温で高純度の水素をつくり出せるのが特長で、燃料電池に利用可能なことも確認した。産業・家庭用の発電機や自動車への利用を視野に入れており、2020年までの製品化を目指す。

群馬県の電装品メーカー澤藤電機との共同研究で、アンモニアから無触媒で高純度の水素を製造できる装置は世界初という。水素を使う燃料電池は次世代エネルギーとして注目されているが、水素は蓄えたり運んだりするために氷点下252.9度に冷却して液体にしたり、高圧で圧縮する必要があり、取り扱いは難しい。

続きはソースで

http://www.gifu-np.co.jp/news/kennai/20170322/201703220854_29270.shtml
ダウンロード


引用元: 【次世代エネルギー】アンモニアから水素/岐阜大教授ら製造装置を開発!製品化目指す [無断転載禁止]©2ch.net

【次世代エネルギー】アンモニアから水素/岐阜大教授ら製造装置を開発!製品化目指すの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/20(木) 17:47:17.26 ID:CAP_USER
CO2から簡単にエタノールを生成する方法が偶然みつかる。常温反応で高効率、低コストが特長 - Engadget Japanese
http://japanese.engadget.com/2016/10/18/co2/
Nano-spike catalysts convert carbon dioxide directly into ethanol | ORNL
https://www.ornl.gov/news/nano-spike-catalysts-convert-carbon-dioxide-directly-ethanol


米テネシー州のオークリッジ国立研究所の研究者が、意図せずして二酸化炭素(CO2)から非常に簡単にエタノールを生成する方法を発見したと発表しました。これまでは藻や光触媒などを利用する方法がありましたが、新しい方法ではナノサイズの銅とカーボン、窒素を用いる常温の反応だけでエタノールを作り出せます。

The journal ChemistrySelectに掲載された論文を超絶にざっくりと説明すると、その技術はシリコンの上に配置したナノサイズの銅と炭素に、ドーパントとなる窒素とわずかな電圧を供給するだけでCO2を溶かし込んだ水を63%という効率でエタノールに変換する連鎖反応を引き起こすことができるとのこと。

研究者らは燃焼で生じるCO2を分解する方法を調べていたものの、偶然にもエタノールが生成できたことに「とても意外だった」と述べています。

続きはソースで

ダウンロード (1)

引用元: 【触媒科学】CO2から簡単にエタノールを生成する方法が偶然みつかる。常温反応で高効率、低コストが特長 [無断転載禁止]©2ch.net

CO2から簡単にエタノールを生成する方法が偶然みつかる。常温反応で高効率、低コストが特長の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/05/27(水) 21:20:20.47 ID:???.net
蓄電・発電機器:エタノール燃料から常温常圧で効率発電を実現、炭素の鎖を断ち切る触媒を開発 (1/2) - スマートジャパン
http://www.itmedia.co.jp/smartjapan/articles/1505/27/news041.html


http://image.itmedia.co.jp/smartjapan/articles/1505/27/km_syokubai.jpg
図1:エタノール分子(左図)とメタノール分子(右図)の模式図。エタノール分子は炭素ー炭素結合を持つがメタノール分子は持たない ※出典:物質・材料研究機構
http://image.itmedia.co.jp/smartjapan/articles/1505/27/km_syokubai2.jpg
図2:TaPt3ナノ粒子の透過電子顕微鏡像。右図はナノ粒子内部で、タンタル原子と白金原子が秩序正しく並んでいることが分かる ※出典:物質・材料研究機構
http://image.itmedia.co.jp/smartjapan/articles/1505/27/km_syokubai3.jpg
図3:常温常圧の水溶液中でのエタノール酸化反応に対する触媒活性の比較 ※出典:物質・材料研究機構
http://image.itmedia.co.jp/smartjapan/articles/1505/27/km_syokubai5.jpg
図4:TaPt3ナノ粒子、Ptナノ粒子を触媒に利用したPEMFCの出力特性 ※出典:物質・材料研究機構
http://image.itmedia.co.jp/smartjapan/articles/1505/27/km_syokubai4.jpg
図5:表面敏感赤外分光法による触媒表面のCO振動(左図)とCO2振動(右図)の測定結果。赤円内部のピークがCOおよびCO2の発生した点。(a)と(c)がTaPt3ナノ粒子の結果 
※出典:物質・材料研究機構


物質・材料研究機構(以下、NIMS)研究員の阿部英樹氏は、ナノ材料科学環境拠点(以下、GREEN)研究員の野口秀典氏、東北大学 原子分子材料 科学高等研究機構の准教授藤田武志氏と共同で、常温常圧でエタノール燃料から効率よく電力を取り出せる触媒の開発に成功した。


 エタノール燃料は、サトウキビやトウモロコシなどバイオマスを発酵して生産できるため、新たなエネルギー源として注目を集めている(関連記事)。しかし、バイオエタノール燃料をディーゼルエンジンなどの内燃機関で燃焼させて電力を得るためには、数百度の高温で空気と燃料を反応させる過程があり、窒素酸化物(NOx)や一酸化炭素(CO)など有害排気ガスが発生する。よりクリーンなエネルギーを求める動きから、エタノールを用いたポリマー電解質膜燃料電池(PEMFC)の研究が進められた。

 PEMFCは、水素やメタノール、エタノールなどの燃料分子を電気化学的に酸化し、部紳士中の化学エネルギーを電力の形で取り出す仕組みだ。


酸化分解すると生物にとって無害な水(H2O)や
二酸化炭素(CO2)に変わるため、有害な排気ガスが発生しないという利点を備える。

 PEMFCでは現在、トヨタ自動車が2014年12月に製品化した燃料電池車「MIRAI」のように、水素を利用するものが大きな注目を集めている(関連記事)。一方で、工場などでよく利用され入手しやすいメタノールについても、燃料電池として活用につながる研究開発が進む(関連記事)。この一方で、エタノールPEMFCについては、開発が大きく遅れている状況だ。


課題だった「炭素ー炭素結合」 

 エタノールPEMFCの開発がなかなか進まなかった要因の1つとして挙げられるのが、エタノールが持つ「炭素(C)ー炭素(C)結合」を効率よく切断できる触媒がなかったためだ(図1)。 

 水素PEMFCやメタノールPEMFCでは、分子は基本的には水素(H)同士、もしくは、「水素ー酸素(O)」「炭素ー酸素」の結合となり、これらを切断する触媒としては、白金の超微粒子(Ptナノ粒子)や白金ルテニウム合金ナノ粒子(Pt-Ruナノ粒子)などが用いられている。しかし、エタノールは、これらの触媒を用いても酢酸(C2H4O2)やアセトアルデヒド(C2H4O)に酸化させる(エタノール部分酸化)ことは可能でも、炭素―炭素結合を切断して、CO2にまで酸化を進めることはできない。 

 Pt3Sn(プラチナスズ)合金ナノ粒子触媒についても、エタノール部分酸化を効率的に促進するため、出力電流はPtナノ粒子より高いものの、エタノール分子の炭素―炭素分子結合を切断する能力自体は、Ptナノ粒子よりも低い。 

続きはソースで

ダウンロード

引用元: 【エネルギー技術/触媒化学】エタノール燃料から常温常圧で効率発電を実現、炭素の鎖を断ち切る触媒を開発

エタノール燃料から常温常圧で効率発電を実現、炭素の鎖を断ち切る触媒を開発の続きを読む
スポンサーリンク

このページのトップヘ