理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

強化学習

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/07(土) 13:03:11.22 ID:CAP_USER
Googleと同じAlphabetを母体に持ち、世界最強の囲碁AI「AlphaGo Zero」を開発した人工知能(AI)開発企業・DeepMindが、ファーストパーソン・シューティング・ゲーム(FPS)で人間を超えた勝率をたたき出すAI「For the Win(FTW)」を開発しました。ただ敵を倒すだけではなく、人間のチームメイトとも協力して有利にゲームをプレイすることができるとのことです。

Capture the Flag: the emergence of complex cooperative agents | DeepMind
https://deepmind.com/blog/capture-the-flag/

人間とゲームをプレイするAIの研究は、2017年にもOpenAI開発のAIが「Dota 2」で人間に勝利するという結果を残し、話題になりました。また、DeepMindも「StarCraft 2」をプレイするAIを研究していたことがあります。

今回、GoogleのDeepMindが開発した「FTW」は、1999年に発売された「Quake III Arena」をプレイ。
「Quake III Arena」はマルチプレイヤー向けのFPSで、今でも大会が開かれるほど人気があるタイトルです。
この「Quake III Arena」での対戦ルール「Capture the Frag(CTF)」という旗取りゲームを行い、人間と一緒にチームで遊べることを目指して学習を行ったとのこと。

CTFは2つのチームに分かれて対戦するゲームで、相手チームの陣地にある旗を奪って自陣に戻るとポイントが加算されるというもの。
単純なルールに見えますが、相手チームに旗を取られた場合は旗を持っているプレイヤーを倒さなければならないなど、状況に応じて狙う相手や動きを変更しなくてはならず、CTFで要求される動きは複雑だと研究チームは評価しています。

戦いの舞台となるマップは同じものを使い続けるのではなく、マッチごとにマップを変更していたとのこと。
これによって、FTWはマップのレイアウトを記憶するのではなく、汎用的な戦略を学習していかなければなりません。
さらに、AIを人間と同じように成長させるため、従来のゲーム用AIのようにゲーム内でのパラメータを直接読み取ってプレイするのではなく、人間と同じように画面上のピクセルを認識させてエミュレートしたコントローラーで操作をさせています。

DeepMindの研究チームは、40人の人間プレイヤーと30のFTWのエージェントをランダムにマッチさせ、45万回以上CTFをプレイさせました。各エージェント間ではリカレント(回帰型)ニューラルネットワークが形成され、さらにゲームポイントから内発的動機付けを行うように学びます。これによってCTFを高いレベルでプレイするようになります。

続きはソースで

Human-level in first-person multiplayer games with population-based deep RL - YouTube
https://youtu.be/dltN4MxV1RI


https://i.gzn.jp/img/2018/07/06/deepmind-capture-the-flag/a01_m.jpg
https://i.gzn.jp/img/2018/07/06/deepmind-capture-the-flag/a02_m.jpg

GIGAZINE
http://gigazine.net/news/20180706-deepmind-capture-the-flag/
ダウンロード (2)


引用元: 【人工知能】世界最強の囲碁AIを開発したDeepMindが「人間を超越したFPSプレイヤー」のAIを開発[07/06]

【人工知能】世界最強の囲碁AIを開発したDeepMindが「人間を超越したFPSプレイヤー」のAIを開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/06(水) 00:07:29.91 ID:CAP_USER9
シンギュラリティが始まったようです。詳細は以下から。

人間を越える人工知能が現れ、自らの力で新たな人工知能を作り上げてゆく未来。シンギュラリティ(技術的特異点)と呼ばれる時系列的な瞬間は2045年頃に起こるとされていましたが、既に私たちはその領域に足を踏み入れていました。

Google Brainの研究者らが「自らの力で新たな人工知能を作り上げるAI」であるAutoMLの開発に成功したと発表したのが今年2017年5月のこと。そしてこの度、AutoMLが作り上げた「子AI」はこれまで人類が作り上げたAIよりも優れた性能を持っていたのです。

Googleの研究者らは「強化学習(reinforcement learning)」と呼ばれる手法を用いて機械学習モデルのデザインを自動化。AutoMLは子AIが特定のタスクへの対応力を発展させるためのニューラルネットワークの制御装置の役割を担います。

今回のNASNetと名付けられた子AIはコンピュータ視覚システムで、リアルタイムの映像から人間、車両、信号、ハンドバッグ、バックパックなどを自動で認識します。

AutoMLはNASNetの性能を査定してその情報をNASNetの改善に用います。この行程を何千回も繰り返します。研究者らはImageNet image classificationとCOCO object detectionという2つの巨大画像データベースサイトで実験を行いましたが、NASNetはこれまで人類が作り上げたどのコンピュータ視覚システムよりもよい成績を収めました。

続きはソースで

配信2017年12月5日10:16
BUZZAP
http://buzzap.jp/news/20171205-google-brain-nasnet/


ダウンロード

引用元: 【IT】GoogleのAIが自力で「子AIの作成」に成功、しかも人間作より優秀 AutoML ★3

GoogleのAIが自力で「子AIの作成」に成功、しかも人間作より優秀 AutoMLの続きを読む
スポンサーリンク

このページのトップヘ