理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

格子

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/07/03(水) 00:35:39.92 ID:CAP_USER
京都大学など、未知の中性粒子発見 電気通さず熱だけ運ぶ
https://headlines.yahoo.co.jp/hl?a=20190702-00000069-zdn_n-sci
2019/7/2
YAHOO!JAPAN NEWS,ITmedia NEWS

画像:電気は通さないが、熱は運ぶ未知の中性粒子の説明図
https://amd.c.yimg.jp/amd/20190702-00000069-zdn_n-000-1-view.jpg

 京都大学・東京大学・茨城大学などの研究グループは7月2日、
 絶縁体中で金属のように熱を運ぶ役割を持つ未知の中性粒子を発見したと発表した。
  「これまでに知られていない、全く未知の粒子」
 (論文責任著者で京都大学の松田裕司教授)という。

 固体中で熱を運ぶ役割を持つのは、動き回れる電子(伝導電子)と、固体を構成する原子の振動(格子振動)の2種類だ。
 金属は動き回れる電子が多いため熱伝導率は高く、絶縁体は動き回れる電子が少ないため熱伝導率は低い。

 研究グループはイッテルビウム12ホウ化物(YbB12)という絶縁体物質に注目。
 YbB12を0.1ケルビンという絶対零度近傍まで冷やし、格子振動による熱伝導を無視できる状態で測定したところ、
 電気を通さないにもかかわらず金属のような温度変化を示したという。

続きはソースで

ダウンロード (6)

 (松田教授)

 研究結果は、英科学雑誌Nature Physicsに7月1日付で掲載された。

引用元: 【物性物理学】京都大学など、未知の中性粒子発見 電気通さず熱だけ運ぶ[07/03]

京都大学など、未知の中性粒子発見 電気通さず熱だけ運ぶの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/08(火) 02:46:41.43 ID:rVGpJO0l
東京大学大学院情報理工学系研究科の川原圭博准教授ら研究グループは1月7日、切断しても機能を保持できるワイヤレス充電用シートを開発したと発表した。任意の形に切り取れることで、スマートフォンを置いたり、ポケットに入れるだけで充電できる家具、衣服、かばんなどを作りやすくなるという。
http://image.itmedia.co.jp/news/articles/1901/07/ky5622_w-01.jpg

 開発したワイヤレス充電シートは、シート中央に電源部を配置。中央から外側に向かって「H木」と呼ばれる配線方法を採用することで、シートの外側から切断しても、残った複数のコイルに電流が行き渡る仕組み。従来のワイヤレス充電シートは、配線やコイルがマトリクス状(格子状)に配置されていることが多く、一部を切断しただけで全体が機能しなくなることが多いという。
http://image.itmedia.co.jp/news/articles/1901/07/ky5622_w-02.jpg
http://image.itmedia.co.jp/news/articles/1901/07/ky5622_w-03.jpg

続きはソースで

■動画
A Cuttable Wireless Power Transfer Sheet https://youtu.be/eBqJG65DhPQ



http://www.itmedia.co.jp/news/articles/1901/07/news109.html
ダウンロード (2)


引用元: 東大、切断できるワイヤレス充電用シートを開発 衣服のポケットでスマホ充電など応用に期待[01/07]

東大、切断できるワイヤレス充電用シートを開発 衣服のポケットでスマホ充電など応用に期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/03/17(土) 10:27:51.30 ID:CAP_USER
 国立研究開発法人 情報通信研究機構(NICT)は15日、光格子時計に基づく高精度な時刻信号の発生を半年間継続させることに成功したと発表した。

 開発されたのは、ストロンチウム光格子時計と、従来のマイクロ波時計で無人運転可能な水素メーザ原子時計(以下水素メーザ)を組み合わせて時刻信号を発生する、「光・マイクロ波ハイブリッド方式」で、これによって、光格子時計に1秒の基準を求めるかたちとしては世界で初めて時刻系信号を半年間生成することに成功したという。

 1秒の長さは、セシウム原子のマイクロ波遷移の周波数を9,192,631,770Hzとすることで決まり、現在、世界最高精度のセシウム時計は、1秒間を±1.1×10^-16(±1京分の5)秒の精度で実現できる。

 一方、NICTにおいて開発されたストロンチウム光格子時計では、それを超える5×10^-17の精度を保っているが、光時計は装置が複雑で、長期間の無人動作で時刻を示し続けるのは難しいという問題があった。

 そこで今回開発されたハイブリッド方式では、動作が止まらない高い信頼性を持ちつつ、大きなズレは起きない発振器(原振)として水素メーザを利用し、その調整を行なうための基準として光格子時計を利用した。

 光格子時計は週1回、3時間程度運転され、水素メーザの周波数のズレを計測し、過去25日間に計測されたデータをもとに、今後1週間の周波数変化を予測して、それを打ち消す調整をあらかじめ設定することで、1秒の精度が5×10^-16秒以内という安定な時刻信号を生成しているという。

続きはソースで

ストロンチウム光格子時計
https://pc.watch.impress.co.jp/img/pcw/docs/1112/124/20180315-01_l.png
光・マイクロ波ハイブリッド方式の構成図
https://pc.watch.impress.co.jp/img/pcw/docs/1112/124/20180315-04_l.png
ストロンチウム光格子時計による原振水素メーザの周波数測定結果
https://pc.watch.impress.co.jp/img/pcw/docs/1112/124/20180315-06L_m.png
生成した時刻信号の協定世界時に対する時刻差(青)とBIPM地球時に対する時刻差(赤) >>1ナノ秒=1×10-9秒
https://pc.watch.impress.co.jp/img/pcw/docs/1112/124/20180315-07L_m.png

英科学誌「Scientific Reports」
https://www.nature.com/articles/s41598-018-22423-5

PC Watch
https://pc.watch.impress.co.jp/docs/news/1112124.html
images (2)


引用元: 【時計】NICT、光格子時計による高精度な時刻標準の生成に成功[03/16]

【時計】NICT、光格子時計による高精度な時刻標準の生成に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/12/30(土) 21:45:56.02 ID:CAP_USER9
炭素原子とその結合からできた蜂の巣のような六角形格子構造を持つシート状の物質「グラフェン」は、ダイヤモンド以上に炭素同士の結合が強く、世界で最も引っ張りに強い物質であり、世界で最も熱伝導率が良い物質とされている。
そのグラフェンを応用し、「最強の防御」を得られるであろう素材が新たに開発された。

グラフェンを2層構造にした「ジアメン(diamene)」は、強い力が加わった時、と貫通不能なダイヤモンドプレートに変化するという。
薄い素材で軽量なのにこの防御力。防弾服に最適である。

■グラフェンとは?

まず、グラフェンをご存知ない方のために説明しよう。
蜂の巣状に並ぶ炭素原子で形成された平らな金網を想像してもらえばいい。

この配列にすると、各炭素原子の3つの電子が原子の手にかたく結びつき、1つは自由に動けるまま残ることから、炭素に素晴らしい特性をもらたす。
ルーズな電子という特性から伝導テクノロジーにも利用できるし、そのメカニカル特性を利用すれば狭いナノチューブを作り出すこともできる。
どちらもの場合も、グラフェンが平らな二次元構造であるゆえに可能になることだ。

image credit:グラフェンの分子構造モデル
http://livedoor.blogimg.jp/karapaia_zaeega/imgs/f/e/fedd0918.jpg

■グラフェンを二枚重ねることで、弾丸貫通不能な無敵の防御素材に

アメリカ・ニューヨーク市立大学先端科学研究センターの研究者は、グラフェン・シートを2枚重ねて、強い力で潰された時に三次元のダイヤモンド状構造に変化するようにした。
これは4つめの電子が固定されるとグラフェンがまた別の有名な炭素同素体、すなわちダイヤモンドに変化する性質を利用したものだ。

またシートの伝導性が急激に変化することで、いくつか面白い電気的特性が生じる。
だが、その応用としてまず考えられるのは軽量の保護材としてである。

続きはソースで

http://livedoor.blogimg.jp/karapaia_zaeega/imgs/7/6/76b554ab.jpg
http://karapaia.com/archives/52251509.html
ダウンロード


引用元: 【技術】銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果

銃弾が当たった瞬間、ダイヤモンドより硬くなる!驚異の素材「グラフェン」を2枚重ねた「ジアメン」で高い防弾効果の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/08/16(火) 12:10:07.49 ID:CAP_USER
共同発表:超高精度の「光格子時計」で標高差の測定に成功~火山活動の監視など、時計の常識を超える新たな応用に期待~
http://www.jst.go.jp/pr/announce/20160816/index.html


ポイント
約15キロメートル離れた2地点の光格子時計を光ファイバーでつないで直接比較した。
重力の違いによる時計の周波数の差を測定し、センチメートルレベルの高精度で標高差を計測することに成功した。
水準測量に相当する高精度な標高差の計測や地殻変動の監視、潮汐変化の観測など、従来の時計の用途を超えた応用が期待される。


JST 戦略的創造研究推進事業および文部科学省 光・量子科学研究拠点形成に向けた基盤技術開発事業において、東京大学 大学院工学系研究科の香取 秀俊 教授(理化学研究所 香取量子計測研究室 主任研究員、光量子工学研究領域 時空間エンジニアリング研究チーム チームリーダー)、国土地理院の研究グループは、直線距離で約15キロメートル離れた東京大学(東京都文京区)と理化学研究所(埼玉県和光市)に光格子時計注1)を設置し、2台の時計の相対論注2)的な時間の遅れを高精度に測定することで、2地点間の標高差を5センチメートルの精度で測定することに成功しました。

光格子時計は、香取教授が考案した高精度な原子時計で、次世代の「秒」の定義の有力候補として世界中で研究されています。「秒」の定義に求められる時計の「再現性」を担保するためには、その時計の「振り子の振動数」を他の研究機関に伝送し、複数の研究機関で「振り子の振動数」の同一性を検証することが重要です。一方、アインシュタインの一般相対性理論によれば、異なる高さに置かれた2台の時計を比較すると、低い方の時計は地球重力の影響を大きく受け、ゆっくりと時を刻みます。この結果、超高精度な時計の遠隔比較では、時計の再現性の確認にとどまらず、従来の時計の概念を超える「相対論的な効果を使った標高差測定(相対論的測地)」という応用を拓きます。

本研究グループは、先行して開発した「低温動作ストロンチウム光格子時計」を東大に1台、理研に2台設置して光ファイバーでつなぎ、遠隔地比較を行いました。同じ高さに置かれた理研の2台の光格子時計の振り子は1×10-18で振動数が一致しました。一方、東大の時計の振り子は理研よりも1,652.9×10-18だけゆっくり振動し、これから2地点の標高差1,516センチメートルが算出されました。この「相対論的測地」の結果は、国土地理院が行った水準測量注3)と5センチメートルの誤差範囲内で一致し、世界で初めて遠隔地時計比較によるセンチメートルレベルの標高差計測に成功しました。

水準測量では、短区間の測定を繰り返して測量するため、長距離では誤差が累積しますが、時計比較の精度注4)は距離が長くなっても累積誤差は生じません。論文では、各地に設置した光格子時計が、将来、新たな高さ基準「量子水準点」を形成し、それらをネットワーク化する「時計のインターネット」の手法を提案しています。これにより、火山活動による地殻の上下変動の監視や、GNSS(全球測位衛星システム)と補完的に利用できる超高精度な標高差計測システムの確立など、安全・安心に向けた社会基盤への実装も期待されます。

本研究は、内閣府 最先端研究開発支援プログラムの一部支援を受けて行われました。本成果は、2016年8月15日(英国時間)発行の英国科学誌「Nature Photonics」オンライン版に掲載されます。

続きはソースで

ダウンロード (2)
 

引用元: 【測定技術】超高精度の「光格子時計」で標高差の測定に成功 火山活動の監視など、時計の常識を超える新たな応用に期待 [無断転載禁止]©2ch.net

超高精度の「光格子時計」で標高差の測定に成功 火山活動の監視など、時計の常識を超える新たな応用に期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2015/08/23(日) 13:10:07.94 ID:???.net
凍ったスピンをさらに冷やして量子効果で液体に融かす | 理化学研究所
http://www.riken.jp/pr/press/2015/20150821_2/


http://www.riken.jp/~/media/riken/pr/press/2015/20150821_2/fig1.jpg
図1 パイロクロア格子構造とその基本単位である正四面体の電子スピンの向き
左:スピンアイスのパイロクロア格子構造と電子スピンの位置(赤丸)
右:パイロクロ格子構造の基本単位である正四面体の電子スピン構造
スピンアイスでは、4つの電子磁気モーメント(右図内の矢印)は、それぞれ正四面体の中心向き(in)か、その逆向き(out)に強く束縛されている。隣り合うスピン対には、スピンを平行にさせようとする力が働くため、inとoutの対(黒線)を好むが、全てを黒線では結べない(幾何学的フラストレーション)。最も安定な2-in, 2-out状態でも、エネルギーが高いin同士、または、out同士の対(緑線)が生じてしまう。また、3-in, 1-outと1-in, 3-outでは、それぞれ磁化のN極の単極子(右図内赤丸)、S極の単極子(右図内青丸)が正四面体の中心にあると見なすことができる。さらに不安定な4-inと4-out状態では、これらの単極子の値はそれぞれ2倍になっている。

http://www.riken.jp/~/media/riken/pr/press/2015/20150821_2/fig2.jpg
図2 中性子の照射によって電子スピンを散乱させた際の散乱強度の空間変調パターン
磁化の単極子が分化して、スピンがアイス則を満たした構造に凍結しかけた低温領域(左)では、特殊な方向に散乱強度が強い尾根状の構造が現れる。アイス則を満たす多数の異なるスピン構造の間を量子力学的に遷移している最低温領域(右)のスピン液体状態では、尾根状のパターンが消失し、窪みが現れる。このパターンは、極めて低速の「光子」が存在すると仮定した場合に得られるものとほぼ一致する。右側の散乱強度はカラースケールを示す。

http://www.riken.jp/~/media/riken/pr/press/2015/20150821_2/fig3.jpg
図3 凍結した電子スピンと融解した電子スピン
左、右:アイス則を満たしたまま凍結した電子スピン(実線矢印)の構造の例。
中央:スピンの集団ゼロ点振動によって融解した電子スピンの液体状態。
スピンの量子力学的集団運動(中央)によって、アイス則を満たした2つ異なるスピン構造(左右)の間を遷移することが可能となる

(前略) 

背景

電流を流さない多くの磁性体では、結晶を構成するイオンの周りに局在した電子が、自転(スピン)することによって極めて小さな磁石を形成します。スピンは通常、磁性体を低温にすることで、互いに同じ向きにそろった強磁性、または、反対方向に向いて打ち消し合う反強磁性など、一定方向にそろった磁気秩序を有する状態に転移します。しかし、磁性体の結晶構造に幾何学的な制約が加わる場合、磁気秩序の形成が抑制されることがあります。

スピンアイスと呼ばれる磁性体は、2つの正四面体が1つの頂点を共有してつながったパイロクロア格子構造をとり、各格子点に電子スピンが局在しています(図1左)。各スピンの向きは、周囲のイオンや電子との相互作用の影響で、パイロクロア格子構造の基本単位である正四面体に対して中心向き(in)か、外向き(out)かのいずれかに強く束縛されています。

隣り合う2つのスピンは、相互作用のために極低温でinとoutの対(図1右、黒線)を作ろうとします。ところが、正四面体上のすべての隣り合うスピン対でこれを満たすことは不可能で、結晶構造に幾何学的な制約が生じます。妥協策として、各正四面体上の4スピンのうち、2つがin、残り2つがoutとなる最も安定した2-in, 2-out(アイス則)構造を取ります(図1右の上段)。さらに、アイス則状態から1つの電子スピンの向きを反転すると、不安定な3-in、1-out構造と1-in, 3-out構造の正四面体の対が生じ、それぞれ中心にN極とS極が発生します(図1右の中段)。このN極とS極は、電子スピンから分化した磁化の単極子として
認識されています。

2010から2012年にかけて小野田らは、上述したスピンアイスの単極子が、量子力学に従って運動する理論模型[3]を導きました注1)。一方、スピンアイスのように単極子を分化させたまま、スピンを凍結や秩序化をさせることなく絶対零度に向けて冷却することができれば、量子スピン液体と呼ばれる新しい物質状態を実現する可能性が理論的に提唱されています。しかし、詳細な数値シミュレーションによってその確証を得ることが課題となっていました。

注1) 2012年8月8日プレスリリース「電子スピンから分化したN極とS極のヒッグス転移を磁性体で観測」


研究手法と成果

研究グループは、スピンアイスの単極子が量子力学に従って運動する最も簡単な理論模型に対して、量子モンテカルロ法による数値シミュレーションを行いました。この計算手法は、近似などを用いないため、統計誤差・数値精度の範囲で厳密です。

対象とした理論模型を冷却していくと、まずアイス則を満たすスピンアイスとして凍結していきます。この温度領域では、電子スピンから分化した単極子は長い時間スケールでは消失することがシミュレーションで示されました。これは、単極子の絶縁体が実現していることを意味します。また、1つだけN極とS極の単極子の対を生成した際、両者に静的な磁気クーロン相互作用がはたらいていることも、中性子を入射することで電子スピンが散乱した異方的な空間パターンのシミュレーション結果(図2左)から分かりました。

詳細・続きはソースで

images



引用元: 【量子力学】凍ったスピンをさらに冷やして量子効果で液体に融かす 電流を流すことなく磁性体中のスピンを制御する可能性を示す 理研

凍ったスピンをさらに冷やして量子効果で液体に融かす 電流を流すことなく磁性体中のスピンを制御する可能性を示す 理研の続きを読む
スポンサーリンク

このページのトップヘ