理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

構造

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/07/17(水) 23:38:00.83 ID:CAP_USER
1億5000万個もの恒星の位置を調べて浮かび上がった”天の川銀河中心の棒状構造”(記事全文です。)
https://headlines.yahoo.co.jp/hl?a=20190717-00010002-sorae_jp-sctch
2019/7/17(水) 21:28配信
YAHOO!JAPAN NEWS,sorae 宇宙へのポータルサイト


(画像)天の川銀河の想像図に再解析された「ガイア」の観測データを重ね合わせたもの
https://amd.c.yimg.jp/im_siggWV.AuaRQ8tsE70qkXR8v8w---x900-y506-q90-exp3h-pril/amd/20190717-00010002-sorae_jp-000-1-view.jpg

欧州宇宙機関(ESA)は7月16日、宇宙望遠鏡「ガイア」が観測した多数の恒星の位置情報をもとに天の川銀河の中心構造を捉えることに成功したとする、バルセロナ大学のFriedrich Anders氏らによる研究成果を発表しました。

恒星が集まった渦巻腕と呼ばれる構造を持つ銀河を「渦巻銀河」と呼びますが、天の川銀河はそのなかでも「棒渦巻銀河」に分類されます。中心部分に棒状の構造を持つことから棒渦巻銀河と呼ばれるのですが、天の川銀河の外に出ることは今の人類にはできないため、実際にどのような構造をしているのか直接見ることはできません。

今回、Anders氏はAnna Queiroz氏とともに開発したプログラムを使い、ガイア宇宙望遠鏡による観測データを解析しました。ガイアは天体の位置や運動について調べるアストロメトリ(位置天文学)に特化した宇宙望遠鏡で、2018年にはガイアが観測した17億にも及ぶ天体の位置情報を元にした、高精細な銀河系の全天画像が公開されています。

(画像)ガイアの観測データから作成された全天画像
https://amd.c.yimg.jp/im_siggSBqp0V3mhzOr54xYwwZQkg---x900-y567-q90-exp3h-pril/amd/20190717-00010002-sorae_jp-001-1-view.jpg

続きはソースで

(画像)中央の斜めに見える棒状構造が天の川銀河の中心部分
https://amd.c.yimg.jp/im_siggvr8Heh.T.VS_o4ikuRlbPw---x900-y506-q90-exp3h-pril/amd/20190717-00010002-sorae_jp-002-1-view.jpg

松村武宏

最終更新:7/17(水) 21:28
sorae 宇宙へのポータルサイト
ダウンロード (3)


引用元: 【宇宙科学】1億5000万個もの恒星の位置を調べて浮かび上がった”天の川銀河中心の棒状構造”[07/17]

1億5000万個もの恒星の位置を調べて浮かび上がった”天の川銀河中心の棒状構造”の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/21(金) 08:03:39.62 ID:CAP_USER
いつの間にか凄いことになっていた日本の電子顕微鏡「磁場」をかけない電子顕微鏡は何が見えるのか?
https://jbpress.ismedia.jp/articles/-/56733
https://jbpress.ismedia.jp/articles/-/56733?page=2
https://jbpress.ismedia.jp/articles/-/56733?page=3
https://jbpress.ismedia.jp/articles/-/56733?page=4
https://jbpress.ismedia.jp/articles/-/56733?page=5
2019.6.20(木)
JBpress

 (小谷太郎:大学教員・サイエンスライター)

 2019年5月22日、東京大学と日本電子の研究者が、画期的な電子顕微鏡を開発したと発表しました*1。
 プレスリリース*2によると、試料に磁場をかけないこの電子顕微鏡は「88年の常識を覆す」といいます。

 電子顕微鏡という、光を用いない顕微鏡が発明されたのは1931年のことです。
 それ以来88年間、電子顕微鏡技術は革新を繰り返し、「常識を覆し」続けてきました。
 現在では、透過型電子顕微鏡をはじめとする各種顕微鏡技術は、原子より小さな構造を映し出し、生体分子の生きた活動を捉え、立体構造を浮かび上がらせることができます。

 しかし「88年の常識を覆す」といわれましても、「電子顕微鏡は磁場を用いる」という常識を持ち合わせている方が電子顕微鏡業界の外にはたしてどれほどいらっしゃるでしょうか。
 記事を打っていて、漠(ばく)たる不安に襲われます。やはりそのあたりの常識はあらかじめ共有しておかないと、うまく覆ってくれない気がします。

 この電子顕微鏡とはどんな技術で、今回の発明はどれほど画期的なのか、今回は常識から解説しましょう。

 *1:https://www.nature.com/articles/s41467-019-10281-2
 *2:http://www.t.u-tokyo.ac.jp/soe/press/setnws_201905271401148880553756.html

 ・私たちが生きているのも顕微鏡のおかげ
  顕微鏡の見せてくれるミクロな世界は美しくも感動的です。
 一滴の水の中には微細な生物が泳ぎ回り、土くれや砂埃は光り輝く宝石の粒となり、葉っぱを拡大して見れば細胞が整然と並んで息づいています。

続きはソースで

images


引用元: 【物理/電子工学】いつの間にか凄いことになっていた日本の電子顕微鏡「磁場」をかけない電子顕微鏡は何が見えるのか?[06/20]

いつの間にか凄いことになっていた日本の電子顕微鏡「磁場」をかけない電子顕微鏡は何が見えるのか?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/20(木) 17:41:15.38 ID:CAP_USER
毎日新聞2019年6月20日 02時00分(最終更新 6月20日 02時01分)

 クジャクの羽やコガネムシの体など光の当たり方で色が出る「発色構造」を人工的に作り、インキを使わず印刷する新たな技術を京都大高等研究院の研究グループが開発した。構造を使って発色させる手法は以前からあったが、より簡易、安価な印刷を可能にし、普及の可能性を広げる。高精細で極小サイズの画像も印刷でき、色あせない。研究成果は20日、英科学誌ネイチャー電子版に掲載される。

 開発したのは、同研究院物質―細胞統合システム拠点(iCeMS)で、材料科学を専門とするシバニア・イーサン教授と伊藤真陽(まさてる)特定助教らのグループ。

 コガネムシの体表のように、物質表面のミクロな多層構造が光を反射して生み出す色は、色素による「色素色」に対し「構造色」と呼ばれる。研究グループは、古くなったプラスチックなどが細い繊維状に裂ける現象に着目。

続きはソースで

https://mainichi.jp/articles/20190619/k00/00m/040/343000c
ダウンロード (1)


引用元: 【印刷】 ムシに学んだ高精細印刷 インキ不要、安価に発色 京大グループ開発 2019/06/20

ムシに学んだ高精細印刷 インキ不要、安価に発色 京大グループ開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/05/13(月) 15:44:05.90 ID:CAP_USER
-構造変化を0.05ナノメートルの精度で捉える-

2019年05月13日
 白川昌宏 工学研究科教授、池谷鉄兵 首都大学東京助教、伊藤隆 同教授らは、生きた真核細胞の中でたんぱく質の立体構造を詳細に解析する技術の開発に成功しました。

 本研究グループは、最新の核磁気共鳴分光測定法(NMR法)と情報科学的解析技術を駆使し、測定機器に細胞の生命維持装置を付加する工夫を重ねた結果、生きた真核細胞(昆虫培養細胞Sf9)内に存在するたんぱく質の立体構造を原子レベルの分解能で観測することに成功しました。このうち3種のたんぱく質については、真核細胞では初となる高分解能(0.05ナノメートルの精度)で立体構造を決定することができました。

続きはソースで

図:Sf9細胞内で決定されたたんぱく質の立体構造
http://www.kyoto-u.ac.jp/ja/research/research_results/2019/images/190401_1/01.jpg

http://www.kyoto-u.ac.jp/ja/research/research_results/2019/190401_1.html
ダウンロード (3)


引用元: 生きた真核細胞内でたんぱく質の立体構造を詳細に観測する技術を開発 京大[05/13]

生きた真核細胞内でたんぱく質の立体構造を詳細に観測する技術を開発 京大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/05/10(金) 21:38:14.30 ID:CAP_USER
■高温高圧で存在する「超イオン氷」を瞬間的に再現、海王星と天王星の謎に迫る

 南極の海から家庭の冷凍庫まで、地球上にある氷はほぼ同じタイプだが、遠く離れた惑星では極端な温度と圧力によって、奇妙で多様な氷が形成されている。

 研究者はこのほど、新しい種類と見られる氷をX線でとらえることに成功した。「超イオン氷」という導電性の高い氷だ。5月8日付けで学術誌『ネイチャー』に発表された論文によると、この氷は、太陽の表面温度の半分ほどの高温と、100万~400万気圧という高圧下で存在する。

「数千度という温度ですが、間違いなくこれは氷の話です」と、研究チームを率いた米ローレンス・リバモア国立研究所の物理学者マリウス・ミヨー氏は言う。

 これだけの高温・高圧条件が地球上で自然にそろうことはないが、天王星や海王星といった、大量の水がある巨大惑星の深部では可能だと考えられる。これらの惑星は独特の磁場を持っており、その起源は謎に包まれている。今回の発見は、その謎を解く鍵になるのではないかと期待されている。
https://natgeo.nikkeibp.co.jp/atcl/news/19/051000268/ph_thumb.jpeg

■18番目の氷

 水の結晶構造は、すでに17種類も知られている(SF作家カート・ヴォネガットの小説『猫のゆりかご』には恐ろしい「アイス・ナイン」という物質が登場するが、実在の「氷IX」はそれよりもずっと無害だ)。そして今から30年以上も前に、水に非常に高い圧力をかけると超イオン氷ができることが予想されていた。

 一般に超イオン導電体は、固体と液体の性質を兼ね備えている。結晶格子を作るのは固体と同じでも、その間を液体のように、電荷を運ぶイオンが自由に流れる。今回のように、水(H2O)の超イオン氷では、酸素の結晶格子の間を水素イオンが飛び回っている。

「物質の状態としては非常にエキゾチックです」と論文共著者で同研究所所属のフェデリカ・コッパリ氏は言う。

2018年、ミヨー氏とコッパリ氏らは、ダイヤモンドアンビルという装置とレーザーによる衝撃波を使って水を圧縮し、数ナノ秒(1ナノ秒は十億分の1秒)の間だけ氷にすることに成功した。氷になっている間は導電率が数百倍になっていて、超イオン氷であることを強く示唆していた。

 その後の最新の研究では、6基の大型レーザーを使って連続的に衝撃波を発生させ、薄い水の層に数百万気圧の高圧と1700~2700℃の高温を与えて氷にした。正確なタイミングでX線を照射して測定したところ(これも数ナノ秒しか持続しない)、酸素原子が確かに結晶構造をとっていることが明らかになった。

 酸素原子は、面心立方格子(立方体の8つの頂点と6つの面の中心に原子がある形)という高密度の配置になっていた。氷の結晶がこのような構造をとっているのが確認されたのはこれが初めてだ、とコッパリ氏は言う。研究チームは、この新しい18種類目の結晶構造を「氷XVIII」と呼ぼうと提案している。

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/19/051000268/02.jpg

続きはソースで

https://natgeo.nikkeibp.co.jp/atcl/news/19/051000268/
ダウンロード (3)


引用元: 地球にない「熱い氷」初めて構造をとらえた 高温高圧で存在する「超イオン氷」[05/10]

地球にない「熱い氷」初めて構造をとらえた 高温高圧で存在する「超イオン氷」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/23(土) 11:48:19.54 ID:CAP_USER
誰も脳の配線図を理解していなかったが、コネクトームと呼ばれる脳の構造を代数的位相幾何学で理解できることが判明した。

人間のコネクトーム(白質の構造で基本的には脳の配線図といってよい)は、脳の異なる部分間をつなぐリンクのネットワークだ。リンクは、灰白質を構成する神経細胞体を接続する神経細胞「軸索」の突起の束である脳の白質によって図式化する。

脳に関する従来の見解では、灰白質が主に情報処理や認知に関与し、白質は脳の異なる部分間で情報を送信している、とされてきた。

白質の構造はあまり理解されてないが、いくつかの高度なプロジェクトによる研究で、コネクトームは当初考えられていたよりもずっと複雑だとわかってきた。人間の脳には、1014のシナプス結合で接続された1010ものニューロンがある。リンク同士の接続を図式化するのはもともと難しい上に、ネットワーク構造が画像解像度に依存するので、さらに難しくなっている。

構造を研究することで、白質は学習や脳の活動調整で重要な役割を果たしている証拠も出てきた。しかし、この役割が構造にどう結び付いているかは正確にはわからない。
https://www.technologyreview.jp/wp-content/uploads/sites/2/2016/08/neural-cycles.jpg

したがって、白質の構造をさまざまなスケールで理解することは神経科学の大きな課題である一方、適切な数学的ツールの欠如が、研究の進展を妨げていた。

しかし今日、この状況は代数的位相幾何学のおかげで変わろうとしている。神経学の研究者が徐々にだが初めて、代数的位相幾何学の価値を理解し始めている。従来、代数的位相幾何学は、空間や形状を分類するための「数学的な探求」だったが、ペンシルベニア大学のアン・サイズモア研究員(準計算機生物学者)などによるチームは、代数的位相幾何学がどのようにコネクトームの理解に革命をもたらすかを示した。

学問的探求において、代数的位相幾何学者は、異なるスケールで位相空間での対称性を見つけるという、試練を設定する。

数学において、対称性とは、視点を変更しても不変であることだ。たとえば正方形は90度回転しても形状が変わらない。これが対称性のひとつのタイプだ。

中でも、コネクトームを理解する上では、さまざまなスケールでも対称性を保つ数学的構造「永続的な相同性」の探求が重要だとわかってきた。

神経学者は、特定の認知機能は、脳全体に分散されているさまざまな神経ノードを利用することにずっと気付いていた。コネクトームプロジェクトの中心的な疑問の1つは、これらのノードが白質でどう接続されているかだ。

神経学者が白質繊維を研究する方法は、繊維の長さに沿って、どう水を拡散するかを観察することだ。拡散経路は、「拡散スペクトルイメージング」によって明らかにでき、白質の構造を理解できる。

詳細に調べるため、サイズモア研究員は8人の健康な成人の脳を測定した。これにより、すべての脳に同じ構造を探せた。チームは特に、聴覚系や視覚系、接触、圧力、疼痛に関する体性感覚システムなど、認知システムに関わる脳の83の異なる領域間のリンクを観察した。

こうして配線図を構築したサイズモア研究者のチームは、構造の研究に代数的位相幾何学の手法を適用することで、いくつかの重要な洞察が生まれた。

まず特定のノードのグループは、グループ内の各ノードが他のすべてのノードに接続された「すべての対全接続している」状態でクリークと呼ばれる構造を形成していることが明らかになった。認知システムのすべては、異なる数のノードを含むのクリークで構成されている。

しかし、分析により、もうひとつの重要な位相構造のグループが明らかになった。この位相構造は「サイクル」と呼ばれる閉じたループで、最初のノードが次のノードに接続し、その次のノードがまた次のノードに接続していき、最後のノードは最初のノードに接続してサイクルが閉じている。

続きはソースで
images (1)
images (1)


引用元: 【数学/脳科学】コネクトーム:脳の構造を代数的位相幾何学で理解できることが判明

【数学/脳科学】コネクトーム:脳の構造を代数的位相幾何学で理解できることが判明の続きを読む

このページのトップヘ