理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

構造

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/05/13(月) 15:44:05.90 ID:CAP_USER
-構造変化を0.05ナノメートルの精度で捉える-

2019年05月13日
 白川昌宏 工学研究科教授、池谷鉄兵 首都大学東京助教、伊藤隆 同教授らは、生きた真核細胞の中でたんぱく質の立体構造を詳細に解析する技術の開発に成功しました。

 本研究グループは、最新の核磁気共鳴分光測定法(NMR法)と情報科学的解析技術を駆使し、測定機器に細胞の生命維持装置を付加する工夫を重ねた結果、生きた真核細胞(昆虫培養細胞Sf9)内に存在するたんぱく質の立体構造を原子レベルの分解能で観測することに成功しました。このうち3種のたんぱく質については、真核細胞では初となる高分解能(0.05ナノメートルの精度)で立体構造を決定することができました。

続きはソースで

図:Sf9細胞内で決定されたたんぱく質の立体構造
http://www.kyoto-u.ac.jp/ja/research/research_results/2019/images/190401_1/01.jpg

http://www.kyoto-u.ac.jp/ja/research/research_results/2019/190401_1.html
ダウンロード (3)


引用元: 生きた真核細胞内でたんぱく質の立体構造を詳細に観測する技術を開発 京大[05/13]

生きた真核細胞内でたんぱく質の立体構造を詳細に観測する技術を開発 京大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/05/10(金) 21:38:14.30 ID:CAP_USER
■高温高圧で存在する「超イオン氷」を瞬間的に再現、海王星と天王星の謎に迫る

 南極の海から家庭の冷凍庫まで、地球上にある氷はほぼ同じタイプだが、遠く離れた惑星では極端な温度と圧力によって、奇妙で多様な氷が形成されている。

 研究者はこのほど、新しい種類と見られる氷をX線でとらえることに成功した。「超イオン氷」という導電性の高い氷だ。5月8日付けで学術誌『ネイチャー』に発表された論文によると、この氷は、太陽の表面温度の半分ほどの高温と、100万~400万気圧という高圧下で存在する。

「数千度という温度ですが、間違いなくこれは氷の話です」と、研究チームを率いた米ローレンス・リバモア国立研究所の物理学者マリウス・ミヨー氏は言う。

 これだけの高温・高圧条件が地球上で自然にそろうことはないが、天王星や海王星といった、大量の水がある巨大惑星の深部では可能だと考えられる。これらの惑星は独特の磁場を持っており、その起源は謎に包まれている。今回の発見は、その謎を解く鍵になるのではないかと期待されている。
https://natgeo.nikkeibp.co.jp/atcl/news/19/051000268/ph_thumb.jpeg

■18番目の氷

 水の結晶構造は、すでに17種類も知られている(SF作家カート・ヴォネガットの小説『猫のゆりかご』には恐ろしい「アイス・ナイン」という物質が登場するが、実在の「氷IX」はそれよりもずっと無害だ)。そして今から30年以上も前に、水に非常に高い圧力をかけると超イオン氷ができることが予想されていた。

 一般に超イオン導電体は、固体と液体の性質を兼ね備えている。結晶格子を作るのは固体と同じでも、その間を液体のように、電荷を運ぶイオンが自由に流れる。今回のように、水(H2O)の超イオン氷では、酸素の結晶格子の間を水素イオンが飛び回っている。

「物質の状態としては非常にエキゾチックです」と論文共著者で同研究所所属のフェデリカ・コッパリ氏は言う。

2018年、ミヨー氏とコッパリ氏らは、ダイヤモンドアンビルという装置とレーザーによる衝撃波を使って水を圧縮し、数ナノ秒(1ナノ秒は十億分の1秒)の間だけ氷にすることに成功した。氷になっている間は導電率が数百倍になっていて、超イオン氷であることを強く示唆していた。

 その後の最新の研究では、6基の大型レーザーを使って連続的に衝撃波を発生させ、薄い水の層に数百万気圧の高圧と1700~2700℃の高温を与えて氷にした。正確なタイミングでX線を照射して測定したところ(これも数ナノ秒しか持続しない)、酸素原子が確かに結晶構造をとっていることが明らかになった。

 酸素原子は、面心立方格子(立方体の8つの頂点と6つの面の中心に原子がある形)という高密度の配置になっていた。氷の結晶がこのような構造をとっているのが確認されたのはこれが初めてだ、とコッパリ氏は言う。研究チームは、この新しい18種類目の結晶構造を「氷XVIII」と呼ぼうと提案している。

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/19/051000268/02.jpg

続きはソースで

https://natgeo.nikkeibp.co.jp/atcl/news/19/051000268/
ダウンロード (3)


引用元: 地球にない「熱い氷」初めて構造をとらえた 高温高圧で存在する「超イオン氷」[05/10]

地球にない「熱い氷」初めて構造をとらえた 高温高圧で存在する「超イオン氷」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/02/23(土) 11:48:19.54 ID:CAP_USER
誰も脳の配線図を理解していなかったが、コネクトームと呼ばれる脳の構造を代数的位相幾何学で理解できることが判明した。

人間のコネクトーム(白質の構造で基本的には脳の配線図といってよい)は、脳の異なる部分間をつなぐリンクのネットワークだ。リンクは、灰白質を構成する神経細胞体を接続する神経細胞「軸索」の突起の束である脳の白質によって図式化する。

脳に関する従来の見解では、灰白質が主に情報処理や認知に関与し、白質は脳の異なる部分間で情報を送信している、とされてきた。

白質の構造はあまり理解されてないが、いくつかの高度なプロジェクトによる研究で、コネクトームは当初考えられていたよりもずっと複雑だとわかってきた。人間の脳には、1014のシナプス結合で接続された1010ものニューロンがある。リンク同士の接続を図式化するのはもともと難しい上に、ネットワーク構造が画像解像度に依存するので、さらに難しくなっている。

構造を研究することで、白質は学習や脳の活動調整で重要な役割を果たしている証拠も出てきた。しかし、この役割が構造にどう結び付いているかは正確にはわからない。
https://www.technologyreview.jp/wp-content/uploads/sites/2/2016/08/neural-cycles.jpg

したがって、白質の構造をさまざまなスケールで理解することは神経科学の大きな課題である一方、適切な数学的ツールの欠如が、研究の進展を妨げていた。

しかし今日、この状況は代数的位相幾何学のおかげで変わろうとしている。神経学の研究者が徐々にだが初めて、代数的位相幾何学の価値を理解し始めている。従来、代数的位相幾何学は、空間や形状を分類するための「数学的な探求」だったが、ペンシルベニア大学のアン・サイズモア研究員(準計算機生物学者)などによるチームは、代数的位相幾何学がどのようにコネクトームの理解に革命をもたらすかを示した。

学問的探求において、代数的位相幾何学者は、異なるスケールで位相空間での対称性を見つけるという、試練を設定する。

数学において、対称性とは、視点を変更しても不変であることだ。たとえば正方形は90度回転しても形状が変わらない。これが対称性のひとつのタイプだ。

中でも、コネクトームを理解する上では、さまざまなスケールでも対称性を保つ数学的構造「永続的な相同性」の探求が重要だとわかってきた。

神経学者は、特定の認知機能は、脳全体に分散されているさまざまな神経ノードを利用することにずっと気付いていた。コネクトームプロジェクトの中心的な疑問の1つは、これらのノードが白質でどう接続されているかだ。

神経学者が白質繊維を研究する方法は、繊維の長さに沿って、どう水を拡散するかを観察することだ。拡散経路は、「拡散スペクトルイメージング」によって明らかにでき、白質の構造を理解できる。

詳細に調べるため、サイズモア研究員は8人の健康な成人の脳を測定した。これにより、すべての脳に同じ構造を探せた。チームは特に、聴覚系や視覚系、接触、圧力、疼痛に関する体性感覚システムなど、認知システムに関わる脳の83の異なる領域間のリンクを観察した。

こうして配線図を構築したサイズモア研究者のチームは、構造の研究に代数的位相幾何学の手法を適用することで、いくつかの重要な洞察が生まれた。

まず特定のノードのグループは、グループ内の各ノードが他のすべてのノードに接続された「すべての対全接続している」状態でクリークと呼ばれる構造を形成していることが明らかになった。認知システムのすべては、異なる数のノードを含むのクリークで構成されている。

しかし、分析により、もうひとつの重要な位相構造のグループが明らかになった。この位相構造は「サイクル」と呼ばれる閉じたループで、最初のノードが次のノードに接続し、その次のノードがまた次のノードに接続していき、最後のノードは最初のノードに接続してサイクルが閉じている。

続きはソースで
images (1)
images (1)


引用元: 【数学/脳科学】コネクトーム:脳の構造を代数的位相幾何学で理解できることが判明

【数学/脳科学】コネクトーム:脳の構造を代数的位相幾何学で理解できることが判明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/23(土) 17:27:34.54 ID:CAP_USER
静かに耳をすますと、何が聞こえるだろう。

鳥のさえずり、波の音、電車や車の音、飛行機の音、工事現場の音。私たちはさまざまな音の中で生活している。時には、大きな不快な音も耳にする。

そんな不快な騒音の94%をカットしてくれる装置を米ボストン大学研究チームが開発した。


■数学的に設計された3Dプリントのアコースティックメタマテリアル

研究チームは、数学的に設計したアコースティックメタマテリアルを3Dプリントで作成した。メタマテリアルとは、自然界にはない光学特性を表す人工物質のことである。

この装置は、入ってきた音を元の場所に送り返す。空気と光は通過させ、音の通過は外側の輪の中のらせん状構造が妨げるのだ。

https://techable.jp/wp-content/uploads/2019/03/Unbenannt.png

続きはソースで

Techable(テッカブル)
https://techable.jp/archives/95394
ダウンロード (2)


引用元: 94%の騒音をカットするメタマテリアルを米大学が3Dプリントで作成[03/17]

94%の騒音をカットするメタマテリアルを米大学が3Dプリントで作成の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/29(火) 19:58:48.77 ID:CAP_USER
産業技術総合研究所(茨城県つくば市)などの研究グループは、青色の顔料「プルシアンブルー」を利用した高性能の脱臭剤を開発したと発表した。元々は放射性物質除去のために研究を進めていた素材だった。活性炭などに比べ、臭いの元となるアンモニアを5~100倍多く吸着するという。グループは畜産業やトイレなどでの利用を見込んでいる。

 産総研によると、この顔料は、原子レベルで見ると、鉄イオンなどからなる格子状の構造をしており、格子の隙間にアンモニアなどを吸着する。高橋顕・産総研主任研究員(32)らは、一部の鉄を銅に置き換えることでアンモニアを吸着する効率を大幅に高めた。また、洗浄すれば何度でも使えるという。

 この脱臭剤と送風機を組み合わせた脱臭機を養豚場の豚舎(48平方メートル)で使ったところ・・・

続きはソースで

https://www.yomiuri.co.jp/photo/20190128/20190128-OYT1I50027-N.jpg

読売新聞
https://www.yomiuri.co.jp/science/20190128-OYT1T50098.html
images


引用元: 【化学】活性炭の100倍、青色の顔料「プルシアンブルーの脱臭剤」[01/29]

活性炭の100倍、青色の顔料「プルシアンブルーの脱臭剤」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/08(火) 14:44:57.27 ID:rVGpJO0l
理化学研究所(理研)開拓研究本部伊藤ナノ医工学研究室の上田一樹研究員、伊藤嘉浩主任研究員らの研究グループ※は、両親媒性ポリペプチド[1]でナノサイズの筒状構造体を作製し、その中に抗がん剤を入れ、筒の両端を半球でキャップした「魚雷型ナノカプセル」を開発しました。

本研究成果は、がん治療をはじめとするさまざまな薬剤体内輸送用カプセルや細胞内への核酸輸送用カプセルとしての応用が期待できます。

アスペクト比[2]を持ったロッド状材料は、高い血中滞留性や細胞内輸送性、細胞内でのエンドソーム[3]脱出性を示すことなどが報告されており、ロッド状のカプセル開発が期待されていました。しかし、ナノサイズでロッド状の中空構造体を作ることは困難であり、これまで達成されていませんでした。

今回、研究グループは、両親媒性ポリペプチドで形成される筒状構造体の存在下で、球状構造体を作る両親媒性ポリペプチドを自己集合化させることで、ロッド状の魚雷型ナノカプセルの作製に成功しました。

続きはソースで

■図 魚雷型ナノカプセルの設計と薬剤輸送
http://www.riken.jp/~/media/riken/pr/press/2019/20190108_1/fig.jpg

理化学研究所
http://www.riken.jp/pr/press/2019/20190108_1/
ダウンロード


引用元: 【医療研究】がんを攻撃する魚雷型ナノカプセル-ナノサイズの筒に抗がん剤を入れ、半球で蓋をする- 理研[01/08]

がんを攻撃する魚雷型ナノカプセル-ナノサイズの筒に抗がん剤を入れ、半球で蓋をする- 理研の続きを読む
スポンサーリンク

このページのトップヘ