理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

樹状突起

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/25(木) 19:11:42.06 ID:CAP_USER
「人間が賢い理由は大脳皮質が大きいためだ」という説明がよく行われますが、マサチューセッツ工科大学(MIT)のMark Harnett氏らによる研究で、大脳皮質の大きさ以外に「そもそもニューロンの振る舞いが他の動物とは異なる」という理由が存在することが明らかにされました。

Electrical properties of dendrites help explain our brain’s unique computing power | MIT News
http://news.mit.edu/2018/dendrites-explain-brains-computing-power-1018

ニューロンの樹状突起はコンピューターでいうところのトランジスタの役目を果たすもの。トランジスタは電気を通すためのスイッチのような存在で、正しい電圧を与えることでプログラムの論理演算に必要な「1」と「O」の情報を伝えます。

樹状突起はほかのニューロンから受け取った信号をニューロンの本体へと伝える役目を持っています。この電気信号が活動電位を起こし、他のニューロンへと伝わっていくことで、ニューロンで構成される巨大なネットワークが情報を交換しあって思考や行動が生まれていきます。

これまでの研究で、樹状突起が伝える信号の強さは、情報がどれだけの距離を移動してきたかに左右されると示されています。つまり、隣にあるニューロンから受け取った信号の刺激は強い一方で、はるか遠くのニューロンから流れてきた信号は弱くなるということです。

人の脳の特徴として、大脳皮質が分厚いということが挙げられます。ラットの大脳皮質は脳全体の30%ほどですが、人間の大脳皮質が占める割合は75%ほど。そして大脳皮質が分厚いがゆえに、情報を伝える樹状突起も他の動物より長くなっています。

人間の大脳皮質はラットの2~3倍の厚みがありますが、その構造は他の哺乳類と同じ6層のニューロンから作られています。5層目のニューロンの樹状突起は1層目のニューロンに届くほど長くなっており、これは、脳が進化する段階で、電気信号を届けるために長くなったのだとみられています。

MITの研究チームは、樹状突起の長さが電気信号の性質にどのように関係していくのかをマウスと比較する形で調査しました。

続きはソースで

https://i.gzn.jp/img/2018/10/25/brain-unique-computing-power/00.jpg

GIGAZINE
https://gigazine.net/news/20181025-brain-unique-computing-power/
images


引用元: 人間の知能が高いのは大脳皮質が大きいだけでなく「ニューロンの振る舞いが根本的に違う」から[10/25]

人間の知能が高いのは大脳皮質が大きいだけでなく「ニューロンの振る舞いが根本的に違う」からの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2015/09/10(木) 17:58:39.07 ID:???.net
共同発表:「貯蔵された記憶を可視化・消去する新技術を開発」記憶のメカニズム解明に前進
http://www.jst.go.jp/pr/announce/20150910/

画像
http://www.jst.go.jp/pr/announce/20150910/icons/zu_a.gif
http://www.jst.go.jp/pr/announce/20150910/icons/zu-b.gif
http://www.jst.go.jp/pr/announce/20150910/icons/zu_c.gif
http://www.jst.go.jp/pr/announce/20150910/icons/zu_d.jpg
http://www.jst.go.jp/pr/announce/20150910/icons/zu_e.gif


ポイント
神経細胞上の樹状突起スパインが学習・記憶に伴い増大することに着目し、新生・増大スパインを特異的に標識し、青色光でそのスパインを収縮させる事が可能な蛋白質プローブ(記憶プローブ)をマウスで開発し、学習・記憶が貯蔵されている場所を可視化・操作する新技術を世界に先駆けて確立しました。
運動野を記憶プローブで標識後に青色光を照射すると、運動学習で獲得された記憶が特異的に消去され、記憶は脳内の少数の神経細胞に密に書き込まれていることが明らかになりました。
こうして記憶に関わるスパインの脳内の大域的な分布を標識する可能性が拓かれ、脳機能やその疾患の解明に新しい糸口が開かれました。


大脳皮質の数百億もの神経細胞はシナプス注1)を介して情報をやり取りしており、特にグルタミン酸作動性シナプスの多くは樹状突起スパイン注1)という小突起構造上に形成されます。スパインは記憶・学習に応じて新生・増大し、それに伴いシナプスの伝達効率が変化するので、脳の記憶素子と考えられてきました。しかし、記憶の獲得時に、実際に使われている多数の記憶素子の分布を同定し、実際の記憶への関与を検証する方法はありませんでした。

今回、東京大学 大学院医学系研究科 附属疾患生命工学センター 構造生理学部門の林(高木) 朗子 特任講師、河西 春郎 教授らの研究グループは、学習・記憶獲得に伴いスパインが新生・増大することに注目し、これらのスパインを特異的に標識し、尚且つ、青色光を照射することで標識されたスパインを小さくするプローブ(記憶プローブ、図A)を開発しました。この記憶プローブを導入したマウスでは、運動学習によって獲得された記憶が、大脳皮質への青色レーザーの照射で特異的に消去されました。
また、各々の神経細胞における記憶に関わるスパインの数を数えたところ、大脳皮質の比較的少数の細胞に密に形成されていることがわかり、記憶を担う大規模回路の存在が示唆されました。
こうして、スパインが真に記憶素子として使われている様子を可視化し、また操作する新技術を世界に先駆けて確立しました。

本研究は、日本医療研究開発機構(AMED)の「脳機能ネットワークの全容解明プロジェクト」(平成27年度より文科省より移管)、戦略的国際科学技術協力推進事業 日英研究交流「次世代光学顕微法を利用した神経科学・病因解明につながる分子メカニズムへの挑戦」(平成27年度以降JSTからAMEDへ移管)、科学技術振興機構(JST)の戦略的創造研究推進事業および文部科学省・科学研究費の支援を受けて行ったもので、国際科学誌「Nature(電子版)」に2015年9月9日(英国時間)付オンライン版で発表されます。

続きはソースで

ダウンロード
 

引用元: 【神経科学】「貯蔵された記憶を可視化・消去する新技術を開発」記憶のメカニズム解明に前進 東大など

「貯蔵された記憶を可視化・消去する新技術を開発」記憶のメカニズム解明に前進 東大などの続きを読む
スポンサーリンク

このページのトップヘ