理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

次元

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/07/06(土) 04:16:39.80 ID:CAP_USER
2019年07月05日 11時35分

https://i.gzn.jp/img/2019/07/05/mitchell-feigenbaum-passed-away/00_m.jpg

自身の名を冠したファイゲンバウム定数などカオス理論の分野で卓越した業績を残したミッチェル・ジェイ・ファイゲンバウム博士が2019年6月30日にニューヨークで亡くなっていたことがわかりました。74歳でした。

The Rockefeller University » Mitchell Feigenbaum, physicist who pioneered chaos theory, has died
https://www.rockefeller.edu/news/26289-mitchell-feigenbaum-physicist-pioneered-chaos-theory-died/

ファイゲンバウム博士は1944年12月19日、アメリカのペンシルベニア州フィラデルフィアで生まれ、ニューヨーク州ブルックリンで育ちました。ラジオ機器に興味を持っていたファイゲンバウム博士は、電気技師を志してニューヨーク市立大学で電気工学の学士号を目指すも物理学に魅了され、物理学者に転身。マサチューセッツ工科大学(MIT)で理論物理学の博士号を取得します。コーネル大学に1970年から1972年、バージニア工科大学に1972年から1974年まで勤めた後、ロスアラモス研究所に勤務。ロスアラモスでの研究が後の「カオス理論」に繋がります。

ファイゲンバウム博士が研究を始めたとき、カオス理論なる言葉はまだ生まれてもいませんでした。ニュートンを含めて世界の科学者は、太陽系の惑星の軌道などの複雑系の計算予測値と実測値の「ずれ」の問題を解決しようと取り組んできました。同じ系で起きている現象でも、初期値がわずかでも異なると最終結果に大きなズレが生じる場合があるのは科学者の悩みの種となっていました。

続きはソースで

https://i.gzn.jp/img/2019/07/05/mitchell-feigenbaum-passed-away/1920px-Mitchell_J_Feigenbaum_-_Niels_Bohr_Institute_2006.jpg

https://gigazine.net/news/20190705-mitchell-feigenbaum-passed-away/
ダウンロード (1)


引用元: 【訃報】カオス理論の先駆的研究者ミッチェル・ファイゲンバウム博士が死去 2019/07/05

【訃報】カオス理論の先駆的研究者ミッチェル・ファイゲンバウム博士が死去の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/03/26(火) 14:16:53.19 ID:CAP_USER
ブラックホールを利用して別次元や他の時空へ移動する「超空間旅行」は、2019年時点ではまだ創作の中にしかありえない話ですが、研究により、実現の可能性が増加しているそうです。

Rotating black holes may serve as gentle portals for hyperspace travel
https://theconversation.com/rotating-black-holes-may-serve-as-gentle-portals-for-hyperspace-travel-107062

https://i.gzn.jp/img/2019/03/26/black-hole-hyperspace-travel/01.png
マサチューセッツ大学ダートマス校の物理学教授であるGaurav Khanna氏は、ブラックホールを利用した超空間旅行について、「炎の近くに手をかざすと熱いけれど、手を素早く動かせば熱があまり気にならないのと同じように、ブラックホールを通過して反対側に出られる可能性はある」と説明しました。

Khanna教授は同僚のLior Burko准教授とともに20年以上にわたってブラックホール物理学を研究してきました。そんなKhanna教授の教え子であるCaroline Mallaryさんは、クリストファー・ノーラン監督による映画「インターステラー」を見て、マシュー・マコノヒー演じる宇宙飛行士・クーパーは・・・

続きはソースで

https://i.gzn.jp/img/2019/03/26/black-hole-hyperspace-travel/02.png

https://gigazine.net/news/20190326-black-hole-hyperspace-travel/
ダウンロード (2)


引用元: 【宇宙】「回転するブラックホール」が超空間旅行の役に立つかもしれない[03/26]

「回転するブラックホール」が超空間旅行の役に立つかもしれないの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/25(月) 15:03:32.65 ID:CAP_USER
はるか遠い宇宙の、さらに一番遠いところについて。

月面着陸や火星旅行...「いつか宇宙に行ってみたい!」という想いは、誰もが一度は抱いたことがあるのでは? なかには「いままで誰にも打ち明けたことがないけれど、じつは宇宙の果てのことも気になっていたんだ...」なんて人もいるかもしれません。

今回のGiz Asksでは、そもそも“宇宙の端っこ”とはどこなのか、そこには何があるのか、宇宙の果てにたどり着いたらどうなるのか...などなどの素朴な疑問について宇宙論、物理学の専門家に聞いてみました。

キーワードはやはり、ビッグバン。宇宙の果てまで想いを馳せると、気になるのは“観測可能な宇宙”のさらにその先のこと。誰も知らない、見たことがない世界だからこそますます興味深いわけですが、そもそもわたしたちに答えを知る術はあるのか...。宇宙には端っこがあるのかないのか=宇宙は有限なのか無限なのかという大きなテーマにぶつかります。宇宙のはるかか彼方を考えるうえで、時間との関係性も忘れちゃいけません。

■1. 宇宙の果て=観測の限界

カリフォルニア工科大学物理学研究教授 。とりわけ量子力学、重力、宇宙論、統計力学、基礎物理の研究に従事。

私たちの知る限り、宇宙に端はありません。観測できる範囲には限りがあるので、そこがわたしたちにとって“宇宙の果て”になるといえます。

光が進むスピードが有限(毎年1光年) であるため、遠くのものを見るときは時間的にも遡ることになります。そこで見られるのは約140億年前、ビッグバンで残った放射線。宇宙マイクロ波背景放射とよばれるもので、わたしたちを全方向から取り巻いています。でもこれが物理的な"端"というわけではありません。

わたしたちに見える宇宙には限界があり、その向こうに何があるのかはわかっていません。宇宙は大きな規模で見るとかなり普遍ですが、もしかすると文字通り永遠に続くのかもしれません。もしくは(3次元バージョンの)球体か円環になっている可能性もあります。もしこれが正しければ、宇宙全体の大きさが有限であることにはなりますが、それでも円のように始点も終点も端もないことになります。

わたしたちが観測できないところで宇宙は普遍的でなく、場所によって状態が大きく異なる可能性もあります。これがいわゆる多元宇宙論です。実際に確認できるわけではないですが、こうした部分にも関心を広げておくことが重要だといえます。

■2. 宇宙に果てはない

プリンストン大学物理・天体物理科学教授。宇宙の起源と進化など宇宙論の研究に従事。

(上に)同じく、宇宙には果てなるものがないと考えられるでしょう。

各方面に向かって無限に広がっているか、おそらく包み込むかたちになっている可能性が考えられます。いずれにしても、端はないことになります。ドーナッツ表面のように、宇宙全体に端がない可能性があります(が、3次元での話です。ドーナッツ表面に関しては2次元なので。)このことはつまり、どんな方向に向けてロケットを飛ばしても良いことになりますし、長いあいだ彷徨ったあげく元の地点に戻ってくることも可能だということになります。

実際に見える宇宙の範囲として、観測可能な宇宙と呼んでいる部分もあります。その意味では、宇宙の始まりから私たちのもとへ光が届くまでの時間がなかった場所が端になります。もしかするとその向こうはわたしたちの身の回りで見られるものと同じ超銀河団で、無数の星や惑星が浮かぶ巨大な銀河であるかもしれません。
■3. 宇宙の果て=もっとも古い光のなかに見える何か

イリノイ大学アーバナ・シャンペーン校物理・天文学助教授。天体物理学、宇宙論の研究に従事。

宇宙の端をどう定義するかにもよります。光のスピードが有限であるため、宇宙の果てを見つけようとすると時間を遡ることになります。アンドロメダ銀河を見るとき、現在の様子こそわかりませんが、アンドロメダの星が光を放射したのを望遠鏡で観測することができたため、約250万年前に起きていたことはわかります。

わたしたちに見えるもっとも古い光は、もっとも遠いところから届いています。そのため宇宙の果てというのはある意味、わたしたちに届くもっとも古い光のなかに見える何かなのかもしれません。すなわち、ビッグバン後かすかに残存する光、宇宙マイクロ波背景放射です。光子が熱い電離プラズマ内の電子間を飛び交うのをやめて地球に流れはじめたことから最終散乱面とよばれていますが、これこそが宇宙の果てだともいえるでしょう。

いま、宇宙の果てに何があるのか。その答えは、わかりません。何十億年も先の未来まで、光が届くのを待たなくてはならないのです。それに宇宙はますますスピードを上げながら膨張しているので、わたしたちはいまの段階では推測することしかできないのです。広い意味で私たちの宇宙はどこから見ても同じように見えます。おそらくいま観測可能な宇宙の端から宇宙を見ようとすると、わたしたちがここから見ているのとほぼ同じ宇宙の様子が見えるはずです。このため、宇宙の果てから見えるものは単純に、より大きな宇宙、銀河、惑星なのだと推測できます。同じような疑問を抱く生命体だって存在するかもしれませんね。

続きはソースで
ダウンロード (6)


引用元: 【物理学】宇宙の果てには何があるの? 専門家に聞いてみた[02/24]

宇宙の果てには何があるの? 専門家に聞いてみたの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/29(火) 22:28:04.68 ID:CAP_USER
オーストラリアとスイスの研究チームが"Flux Capacitor"を開発したと学術誌Physical Review Lettersに発表しました。
Flux Capacitorといえば、映画「バック・トゥ・ザ・フューチャー」シリーズに登場するタイムマシン(デロリアン)が、時間移動をするために使う"次元転移装置"のこと。チームが開発したフラックスキャパシターの回路構造もそれにそっくりです。
研究は主にオーストラリアの研究機関Centre for Engineered Quantum Systems (EQUS)と、Future Low-Energy Electronics Technologies (FLEET)が協力して行いました。

FLEETのJared Cole氏は「このデバイスは電気抵抗がゼロになる超伝導体で構成される2つの回路から構成され、そのひとつは映画に出てくるフラックスキャパシターのデザインにそっくりです」、さらに「回路に信号を通すと、磁束による量子トンネル効果と呼ばれる現象によって回路に配置したキャパシターの周りを流れます。
このとき、時間反転対称性と呼ばれる物理学的特性が破れます」と説明しています。

われわれ素人が「時間反転対称性を打ち破る」などと聞かされると・・・

続きはソースで

関連ソース画像
https://s.aolcdn.com/hss/storage/midas/4f1435bc96bf6dfdd7dc6ce33dfb24dd/206410319/main.jpg
https://s.aolcdn.com/hss/storage/midas/8e814ceb1d546e71aef76de58dfd0e8f/206410325/circulator1.gif

https://japanese.engadget.com/2018/05/29/flux-capacitor/
ダウンロード (9)


引用元: 【話題】『バック・トゥ・ザ・フューチャー』の次元転移装置?物理学者が「時間反転対称性」破るFlux Capacitorを開発

『バック・トゥ・ザ・フューチャー』の次元転移装置?物理学者が「時間反転対称性」破るFlux Capacitorを開発の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/05/28(月) 17:06:01.40 ID:CAP_USER
米国防情報局は、ワープエンジンを製造するためにダークエネルギーや余剰次元の操作を利用する可能性に関する文書を発表した。

このような技術は、光よりも速く移動することを可能にするが、懐疑的な学者らは、現在及び近い将来にこれらをつくるのは不可能だとの見方を示している。科学技術情報誌「Science Alert(サイエンス・アラート)」が紹介した。

文書では、人類は宇宙の加速膨張の原因とされるダークエネルギーや・・・

続きはソースで

https://jp.sputniknews.com/science/201805284926198/
ダウンロード (5)


引用元: 【未来技術】米国防総省、ダークエネルギーを使った超光速ワープエンジン製造に関する文書発表

【未来技術】米国防総省、ダークエネルギーを使った超光速ワープエンジン製造に関する文書発表の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2018/04/25(水) 09:57:07.99 ID:CAP_USER
昨年、既存の数学(代数的位相幾何学)を新しい手法で用いて、脳の構造を覗き見るという試みがなされた。そして判明したのは、脳は最大11次元で機能する多次元幾何学的構造を作り出せるということだ。

我々は3次元の視点で世界を考えることに慣れているため、あまりピンとこないことだろう。しかし、この研究結果が、我々が知る最も複雑な構造である人の脳を理解する上で次なる大きな飛躍になるかもしれない。

■代数的位相幾何学を用いて脳の構造を分析

この脳モデルは、スーパーコンピューターで人間の脳を再構築することを目的とするスイスの研究イニシアチブ「ブルー・ブレイン・プロジェクト(Blue Brain Project)」のチームによって作られた。

チームが用いたのは、代数的位相幾何学という物体や空間の性質をその変化にかかわりなく記述するために使われる数学だ。

その結果、神経細胞の集団が結合されて”クリーク(clique/小集団)”になること、ならびにクリークの神経細胞の数は高次元幾何的対象(high-dimensional geometric object/数学的次元の概念で、時空のものではない)としてのサイズを決めるということが分かった。

「想像したこともない世界が見つかりました」と研究チームのリーダーであるEPFL研究所のヘンリー・マークラム氏は話す。

「ほんの小さな脳の小片にすら、7次元にも達する対象が数千万もあります。一部のネットワークでは最大11次元もの構造すら発見されました」

はっきりさせておくと、これは空間の次元のことではない。そうではなく、神経細胞クリークの結合のされ方を究明するための、見方のことを言っている。

ネットワークは、網羅的に結合されたノード集合(クリークと呼ばれる)の観点から分析されることがよくある。そしてクリークの中の神経細胞の数がその大きさ、より正式に言うなら次元を決める。論文ではそう説明されている。

続きはソースで

http://karapaia.com/archives/52258715.html

image credit:the Blue Brain Project
https://livedoor.4.blogimg.jp/karapaia_zaeega/imgs/5/e/5e297119.jpg

images



引用元: 【脳】「人間の脳の構造は最大11次元」 代数的位相幾何学を用いた分析結果(スイス研究)

「人間の脳の構造は最大11次元」 代数的位相幾何学を用いた分析結果(スイス研究)の続きを読む

このページのトップヘ