理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

水素

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/02/04(月) 12:28:06.17 ID:CAP_USER
-赤外光エネルギーの利用に期待-

 坂本雅典 化学研究所准教授、寺西利治 同教授、廉孜超 化学研究所・日本学術振興会特別研究員(PD)らの研究グループは、豊田工業大学、関西学院大学、立命館大学、国立研究開発法人物質・材料研究機構と共同で、赤外域に局在表面プラズモン共鳴(LSPR)を示すCu7S4(硫化銅)ナノ粒子と硫化カドミウムナノ粒子を連結させたヘテロ構造ナノ粒子を合成し、その水素生成光触媒活性を評価しました。

 本研究の結果、白金を担持した硫化銅/硫化カドミウムヘテロ構造ナノ粒子が、波長1100 ナノメートルでの外部量子効率3.8%という世界最高の効率で赤外光から水素を生成できる光触媒であることを発見しました。

続きはソースで

図:本研究で合成した硫化銅/硫化カドミウムヘテロ構造ナノ粒子のイメージ図と赤外応答光触媒活性
http://www.kyoto-u.ac.jp/ja/research/research_results/2018/images/181218_2/01.jpg

http://www.kyoto-u.ac.jp/ja/research/research_results/2018/181218_2.html
ダウンロード (1)


引用元: 【光触媒】世界最高効率で赤外光を化学エネルギーに変換することに成功 京都大学[02/04]

【光触媒】世界最高効率で赤外光を化学エネルギーに変換することに成功 京都大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/26(土) 14:08:13.96 ID:CAP_USER
ハーバー・ボッシュ法とは鉄を主体とした触媒上で水素と窒素を反応させ、アンモニアを生産する方法です。1906年に開発されたこの方法は、1世紀以上が経過した現在でも肥料生産をはじめとするさまざまな工業プロセスに使用されており、21世紀の課題である食料とエネルギーの問題についても、救世主となり得るとされています。

The future is green: the future is ammonia… | World Fertilizer
https://www.worldfertilizer.com/special-reports/28122018/the-future-is-green-the-future-is-ammonia/

ヨーロッパの肥料産業団体であるFertilizers Europeは、「Feeding Life 2030」という報告書の中で増加する世界の人口を養う食料を効率的に生産する問題と気候変動への取り組み、そしてエネルギーを生産および輸送する新しい方法について述べています。

小麦をはじめとする農作物を育てるためには、窒素分を含む肥料を十分に供給することが重要です。ハーバー・ボッシュ法は窒素化合物であるアンモニアを工業的に、大規模に生産することが可能であり、世界中の人口を養うために必要不可欠な技術となっています。Fertilizers Europeによると、窒素肥料によって生産された食料は世界人口のうち50%を養っているそうです。

2019年の時点で世界の人口はおよそ75億人ですが、国連の試算によると2030年には世界の人口は86億人にまで増加するとのこと。10年強でおよそ10億人もの人口が増えることになり、今日と比べて10億人もの飢えた人々が生まれるおそれがあるとされています。そのため、ハーバー・ボッシュ法による肥料生産は世界の人口を養うために必要不可欠です。

by Danilo Ugaddan

続きはソースで

https://i.gzn.jp/img/2019/01/26/ammonia-panacea-food-and-energy/00_m.jpg

GIGAZINE
https://gigazine.net/news/20190126-ammonia-panacea-food-and-energy/
images (2)


引用元: 【食糧問題】アンモニアを作り出すハーバー・ボッシュ法は21世紀の食料・エネルギー問題の救世主にもなるのか?[01/26]

【食糧問題】アンモニアを作り出すハーバー・ボッシュ法は21世紀の食料・エネルギー問題の救世主にもなるのか?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/11(日) 19:17:21.50 ID:CAP_USER
 九州大学と九州工業大学の研究グループは、立方晶fcc(面心立方格子)構造を有する鉄鋼において、水素含有量が増加するほど立方晶hcp(六方最密構造)相の生成が抑制されることを世界で初めて発見した。

 鉄鋼の強さと機能性は、結晶構造によって変化し、結晶構造は、鉄に添加する元素の種類や量によって変わる。従来、水素はfcc→hcp結晶構造変化を「促進」することが定説となっていた。

 しかし本研究では、水素を含ませた鋼材の挙動調査で、水素がfcc→hcp結晶構造変化を「顕著に抑制」することを発見。水素の含有量を調整した試料を冷却しながらhcp相分率を測定したところ、試料中の水素量が多いほどhcp相分率が増加せず、fcc-hcp変態が抑制されていることがわかったという。これは世界で初めて観測された現象であり、これまでの常識を打ち破るものだ。

続きはソースで

論文情報:【Scientific Reports】An unconventional hydrogen effect that suppresses thermal formation of the hcp phase in fcc steels
https://www.nature.com/articles/s41598-018-34542-0

https://univ-journal.jp/23459/
images


引用元: 鉄鋼中の水素が結晶構造変化を抑制 九州大学と九州工業大学が発見 鋼材の高品質化・高強度化に向けた研究開発に貢献

鉄鋼中の水素が結晶構造変化を抑制 九州大学と九州工業大学が発見 鋼材の高品質化・高強度化に向けた研究開発に貢献の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/02(日) 15:29:27.32 ID:CAP_USER
■nao@parasite2006
8月31日東京「処理水の取扱いに係る説明・公聴会」で元北海道がんセンター西尾正道氏(http://www.meti.go.jp/earthquake/nuclear/osensuitaisaku/committtee/takakusyu/pdf/HPup3rd/iken3.pdf … )が途中で切り取った朝日新聞記事写真を元に「動物実験、74年度。3万7千ベクレルで染色体異常。放医研。6万㏃を流そうとしている」と盛大に計算違い。
https://twitter.com/parasite2006/status/1036011265821302784

https://pbs.twimg.com/media/Dl5dD4oVsAEwdYe.jpg
(切り取られた1974年10月8日付の朝日新聞東京版夕刊の記事)

■だが切り取られた記事には続きがありました↓
https://pbs.twimg.com/media/Dl6cyNtVAAINhOZ.jpg

@noraneko_5625
(同じ場所で切り取られたこの記事の画像でGoogle画像検索でヒットする最も古いものは、折紙付きのあきれたブログ「原発問題」の2014年8月11日付の記事
https://blog.goo.ne.jp/jpnx05/e/35f003abcbbc42a3219ebf9e05e347f3 ですが、画像はないもののこの記事にふれている2013年03月02日付のブログ記事
https://ameblo.jp/sunamerio/entry-11482091075.html
があることから、この記事はかなり古くからトリチウム=三重水素が話題になるたびに内容の一部だけをつまみ上げて引き合いに出されてきていることがうかがえます。

余談ながらこの朝日新聞記事が取り上げた1974年=昭和49年に開催された日本放射線影響学会第17回大会の発表抄録そのものは、古すぎてオンラインで探し当てることができませんでしたが、この研究内容の要約が放射線医学研究所の昭和49年の和文年報
http://www.nirs.qst.go.jp/publication/annual_reports/S49/pdf/full.pdf
の印刷ページ番号30に収録されています:
トリチウムによる染色体異常の線量効果の研究
遺伝研究部(堀雅明、中井斌)

トリチウムの内部被ばくによる遺伝的効果、特に低レベルの効果を定量的に明らかにする目的で、ヒトの培養リンパ球にとり込まれたトリチウムの効果を染色体異常を指標として分離し、トリチウム水(THO)およびトリチウムーチミジン(3H-TdR)によって誘発される染色体異常の型とその濃度効果を比較検討した。培養された末梢血リンパ球と種々の濃度(10マイナス6乗μCi〜10の3乗μCi/ml)で48時間処理して、その第一分裂中期の染色体について染色体異常を解析した。

高濃度のトリチウム水はトリチウムーチミジンと同様に染色体異常を誘発し、細胞分裂を阻害する。トリチウムによって誘発される染色体異常は主として染色分体系の切断で、その他に染色体切断、染色分体組替え、染色体組換えなどが観察された。
染色体異常の出現頻度は低濃度(10マイナス2乗μCi/ml以下)では対照区も有意な差は認められなかったが、高濃度では次のような濃度効果曲線を示した。

続きはソースで

https://twitter.com/5chan_nel (5ch newer account)
images


引用元: 【トリチウム水公聴会で出された40年前の論文がネットで話題】染色体異常を生じるトリチウムの濃度ってどれくらい?

【トリチウム水公聴会で出された40年前の論文がネットで話題】染色体異常を生じるトリチウムの濃度ってどれくらい?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/04(火) 13:42:25.45 ID:CAP_USER
 新エネルギー・産業技術総合開発機構(NEDO)と人工光合成化学プロセス技術研究組合(ARPChem)は、東京大学とともに、太陽電池材料として知られるCIGSをベースとした光触媒で、非単結晶光触媒の中で水素生成エネルギー変換効率(光触媒の水素生成能力を表す性能指数)12.5%を達成したと発表した。

 NEDOは、環境に優しいモノづくりを実現するために、太陽光のエネルギーで水から生成した水素と、工場などから排出されるCO2を合成して、プラスチック原料などの基幹化学品(C2~C4オレフィン)製造プロセスを実現するための基盤技術開発に取り組んでいる。太陽光は光触媒を活用することでエネルギー源として有効に活用することが可能であり、そのため、光触媒のエネルギー変換効率の向上が重要な課題になる。

 今回、NEDOとARPChemは、東京大学とともに、太陽電池材料として知られるCu(In,Ga)Se2(略称CIGS)をベースに、太陽光のスペクトル強度がピークとなる可視光領域(波長400n~800nm)の光を吸収する光触媒材料を開発した。

 光触媒は、太陽光エネルギーを化学エネルギーに変換する機能性材料。太陽光の強度のピークは主に可視光領域(400~800nm)にあるため、この波長域の光を吸収する光触媒ができれば、効率よく太陽光のエネルギーを利用できる。しかし、従来の光触媒は、吸収波長が主として紫外光領域(~400nm)に限られるものが多く、可視光から赤外光領域にかけての光を利用できるように、光触媒の吸収波長を長波長化することが課題の一つだった。

 このため、同プロジェクトでは従来よりも長波長の光を吸収する光触媒材料の一つとして、カルコゲナイド系材料(硫化物、セレン化物、テルル化物などの化合物)の開発を進めてきた。中でもCu(In1-x,Ga x)Se2(CIGS)は赤外領域までの太陽光(xの組成比により750~1230nmまで変化)を利用できるという特徴を持ち、既に太陽電池材料としてメートルスケールの製造技術が確立されている。

 このCIGSはp型半導体であり、その表面にn型半導体を成膜しpn接合を構成することで、光照射によりCIGS固体内で生成した電子と正孔を効率的に分離し、再結合を抑制させることで高い量子効率を得られることが知られていた。今回の研究ではこれらの知見を参考にした上で、二つの工夫により、CIGS中で光照射により生じた電子を用いて、水から高効率で水素を生成させることに成功した。

 工夫の一つは、新規組成のCIGSの開発にある。これにより、高負荷条件ではCIGSとn型半導体の間の障壁が原因で電子が注入されにくくなり、結果的に効率が顕著に低下してしまうという課題をクリアした。もう一つは、大電流密度で水分解反応を進行すると、液相側の電気抵抗をはじめとした効率低下要因が顕在化することを生かした点だ。電解液の成分などを最適化することにより、効率的に水素が得られるようになった。

続きはソースで

■CIGSをベースとした水素生成光触媒の外観(約5cm角)
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo01.jpg
■最適組成の電解液中における、開発した水素生成光触媒の電流電位曲線(左)と水素生成エネルギー変換効率(右)
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo02.jpg
■左は開発した水素生成光触媒と酸素生成光触媒を用いた2段型セル(タンデム配置)の模式図、右は2段型セルに疑似太陽光を照射した時の太陽光エネルギー変換効率
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo03.jpg

http://www.itmedia.co.jp/smartjapan/articles/1809/03/news023.html
ダウンロード (5)


引用元: 【光触媒】「人工光合成」実現を後押し、世界最高の水素変換効率12.5%を達成[09/03]

【光触媒】「人工光合成」実現を後押し、世界最高の水素変換効率12.5%を達成の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/16(木) 17:01:13.44 ID:CAP_USER
NASAの研究者たちは、太陽風が届く範囲(太陽圏、ヘリオスフィア)の最も外側にあるとされる"水素の壁"を、太陽系外縁天体探査機ニューホライズンズが観測したと発表しました。この"水素の壁"は約30年前にボイジャー1号が観測したのと同じものと考えられます。

太陽が放出する太陽風は、冥王星よりもさらに遠くへと吹き及びます。しかしその太陽風にもそれ以上進めなくなる範囲があり、そこでは太陽系の外側から飛んでくる星間風との境界ができます。
研究者らは、ニューホライズンズの紫外線観測において、通常では見られない紫外線の"煌めき"を観測したとのこと。これはボイジャー1号も観測したもので、潜在的に凝集された水素による壁が、惑星間空間からやってきた紫外線を拡散している現象と考えられています。

ただし、研究者らはこの紫外光が"水素壁"によるものかどうか、またはそれがボイジャーが観測したものと同じかどうかはまだ確信が持てないとしています。

続きはソースで 

https://s.aolcdn.com/hss/storage/midas/936b86d5919179e262a755af1b64726/206591861/mianNH.jpg


https://japanese.engadget.com/2018/08/13/hydrogen-wall/
images


引用元: 太陽圏の端の「水素壁」か。太陽系外縁探査機ニューホライズンズが不自然な紫外線の拡散を観測[08/14]

太陽圏の端の「水素壁」か。太陽系外縁探査機ニューホライズンズが不自然な紫外線の拡散を観測の続きを読む
スポンサーリンク

このページのトップヘ