理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

波長

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/12/03(土) 17:16:12.20 ID:CAP_USER9
水は0℃で凍り、100℃で沸騰することに異論のある人はいないだろうが、このほど、ミクロの世界では水は100℃に熱せられると氷結するという、驚くべき現象が発見された。

11月28日、科学技術関連のネットサイト、phys.orgにマサチューセッツ工科大学の研究結果が掲載された。研究者たちは実験により、カーボンナノチューブ中の水に100℃の温度条件を与えると、水が氷結することを発見した。正確には105℃から151℃の環境下で、カーボンナノチューブ中の水分が、沸騰ではなく氷になる。これはつまり、水分子が凝固して動かなくなることを意味している。

水のようなごく一般的な物質が、ミクロの世界では思いがけない変化を起こすことがあると、科学者たちは認識している。同大学の化学者、マイケル・ストラーノ教授は、液体をナノクラスの容器に入れると、その液体の位相(Aの波長とBの波長の周期がどれだけズレているか)の特性を変化させることができると説明している。

続きはソースで

http://www.epochtimes.jp/2016/12/26474.html
images


引用元: 【科学】100℃で氷結する水が発見される ©2ch.net

100℃で氷結する水が発見されるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/18(火) 21:44:03.30 ID:CAP_USER
キヤノン:キヤノンが世界で初めてInPイマージョン回折素子の開発に成功
http://web.canon.jp/pressrelease/2016/p2016oct18j.html
http://web.canon.jp/pressrelease/2016/img/p2016oct18.jpg


キヤノンは、Ge(ゲルマニウム)、CdZnTe(テルル化カドミウム亜鉛)に続き、InP(リン化インジウム)のイマージョン回折素子の開発に世界に先駆けて成功しました。ラインアップの強化により、観測可能な赤外波長が広がり、宇宙観測のさらなる進展に寄与します。

人工衛星や天体望遠鏡には、宇宙が放つ光に含まれる情報を取り出すために、光を波長ごとに分ける分光器が搭載されており、宇宙観測において重要な役割を担っています。イマージョン回折素子は、一般的な反射型素子に比べて分光器の小型化、高性能化を可能にする分光用のデバイスです。今回ラインアップに加わったInPのイマージョン回折素子は、同じ波長をカバーする一般的な反射型素子を搭載した分光器と比較して、分光器の体積を約1/27に小型化することが可能です。これまで、大きさや質量の制約により、搭載が難しかった高性能分光器を人工衛星に搭載して宇宙に打ち上げることが可能となり、宇宙観測の可能性がさらに広がることが期待されます。また次世代の地上大型望遠鏡に適用することにより、大型化が課題となる望遠鏡の小型化につながることも期待されます。

続きはソースで

images
 

引用元: 【光学技術】キヤノンが世界で初めてInPイマージョン回折素子の開発に成功 [無断転載禁止]©2ch.net

キヤノンが世界で初めてInPイマージョン回折素子の開発に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/16(日) 12:22:15.38 ID:CAP_USER
横滑りX線導波管 | 理化学研究所
http://www.riken.jp/pr/press/2016/20161013_1/
http://www.riken.jp/~/media/riken/pr/press/2016/20161013_1/fig2.gif
横滑りX線導波管 | 60秒でわかるプレスリリース | 理化学研究所
http://www.riken.jp/pr/press/2016/20161013_1/digest/


X線は医療や科学研究を支える重要な光の一つです。しかし、X線は波長が非常に短く物質を透過しやすい性質を持つため、例えばその向きを変えるという基本的な制御すら、いろいろな工夫が必要です。そのため、多くのX線実験がさまざまな制約の下で行われています。そこで、X線を制御する新しい手法を開発すれば、制約を緩和して実験の幅をさらに広げることが可能になります。

今回、理研の研究チームはまず、圧電素子(与えられた電圧に応じた圧力を発生させる素子)でシリコン薄膜単結晶の歪みを制御する装置を開発しました。次に、大型放射光施設「SPring-8」で単色・平行度の高いX線ビームを作り、歪みを制御した試料に照射しました。結晶の角度は「ブラッグの条件」付近になるように維持しました。ここで、ブラッグの条件とは、結晶に入射したX線の回折が強め合うために必要な入射角度条件のことです。

続きはソースで

ダウンロード (1)

引用元: 【光学技術】横滑りX線導波管 理論物理の検証が拓いたX線制御の新技術 [無断転載禁止]©2ch.net

横滑りX線導波管 理論物理の検証が拓いたX線制御の新技術の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/07(金) 17:51:18.97 ID:CAP_USER
宇宙の塵に隠されたM78星雲の星々、「ダストバスター」望遠鏡が解き明かす (sorae.jp) - Yahoo!ニュース
http://headlines.yahoo.co.jp/hl?a=20161007-00010001-sorae_jp-sctch
http://amd.c.yimg.jp/amd/20161007-00010001-sorae_jp-000-1-view.jpg


漆黒の宇宙…とはよくいいますが、その宇宙も星間物質である「宇宙塵」などで、意外と曇ったりして遠くが見えないことがあります。しかし、ヨーロッパ南天天文台のダストバスターこと「VISTA(可視光線・赤外線天文探査望遠鏡)」なら、これまで宇宙塵で見ることのできなかった隠された星々を観測することができるのです。
 
今回の画像は、チリのアタカマ砂漠に設置されたVISTAがとらえた反射星雲「M78」です。M78といえばウルトラマンがやってきた光の国がある、あの……というのはさておき、このM78は地球から1,600光年先のオリオン座の方向にあります。反射星雲とは周囲の恒星の光を星間物質が反射している星雲で、M78は反射星雲のなかでも非常に明るいものの一つです。
 
VISTAは近赤外線の波長を利用して、このように星間物質などに隠された天体の観察を得意としています。赤外線のように波長の長い光は塵を突き抜けることができるのですが、それ以外の光は宇宙のガスやチリに吸収されてしまうのです。

例えば可視光線で観察した場合、M78は明るい雲のなかにいくつかの星が輝いているように見えます。しかしVISTAで観察すると、そこにはたくさんの輝く星々が観察できたのです。星々の中には青い光を放つ若い星や、若い星から発せられるジェットなどが観察できます。
 
このように、宇宙の天体は観測の仕方を変えることでさまざまな顔を見せてくれます。なお、ウルトラマンの光の国は銀河系から300万光年離れた所にあるので、実際のM78とは関係ないようです。トホホ。

ダウンロード
 

引用元: 【天文学】宇宙の塵に隠されたM78星雲の星々、「ダストバスター」望遠鏡が解き明かす [無断転載禁止]©2ch.net

宇宙の塵に隠されたM78星雲の星々、「ダストバスター」望遠鏡が解き明かすの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/09/22(木) 21:50:58.55 ID:CAP_USER
水素分子の解離過程を8フェムト秒で制御 | 理化学研究所
http://www.riken.jp/pr/press/2016/20160920_4/
水素分子の解離過程を8フェムト秒で制御 | 60秒でわかるプレスリリース | 理化学研究所
http://www.riken.jp/pr/press/2016/20160920_4/digest/


水素分子(H2)は、水素原子(H)が2個結び付くことによって構成される最も簡単な構造の分子です。したがって、水素分子が水素原子2個に分離する過程(解離)は、最も簡単な化学反応と言えます。しかしこの解離過程は1種類ではなく、異なる解離過程を経て生じた水素原子は内部の電子の様子が異なり、それぞれ別の状態の水素原子として区別されます。最も簡単な化学反応であるにも関わらず、異なる解離過程を超高速で制御することはこれまで不可能でした。

このように分子の化学反応を制御する方法として、レーザー光を用いた手法が盛んに研究されてきました。これまでに可視光の数10フェムト秒(1フェムト秒は1000兆分の1秒、10-15秒)レーザー光を用いた制御方法が考案されてきましたが、光子エネルギーが低く(波長が長く)かつパルス幅の短縮が不十分であるといった問題がありました。

2015年に、研究チームは、3,000兆分の1秒という短い時間幅のパルスが並んだ「アト秒パルス列(APT)」(1アト秒は100京分の1、10-18秒)という特殊なレーザー光で水素分子をイオン化すると、水素分子イオン(H2+)が振動を始めるための準備時間が、従来考えられていた時間よりはるかに長いことを発見し、使用するパルスによってその準備時間を制御可能なことを示しました。

続きはソースで

ダウンロード (1)

引用元: 【技術】水素分子の解離過程を8フェムト秒で制御 極端紫外アト秒パルス光によるコヒーレント制御の幕開け [無断転載禁止]©2ch.net

水素分子の解離過程を8フェムト秒で制御 極端紫外アト秒パルス光によるコヒーレント制御の幕開けの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/09/02(金) 21:18:15.25 ID:CAP_USER
環境の変化によって自在に色を変える水 | 理化学研究所
http://www.riken.jp/pr/press/2016/20160901_1/
https://www.youtube.com/embed/89ZZ2xc1ZWQ
http://www.riken.jp/~/media/riken/pr/press/2016/20160901_1/fig2.jpg
http://www.riken.jp/~/media/riken/pr/press/2016/20160901_1/fig3.jpg


要旨

理化学研究所(理研)創発物性科学研究センター創発ソフトマター研究グループの相田卓三グループディレクター(東京大学大学院工学系研究科教授)、創発生体関連ソフトマター研究チームの石田康博チームリーダー、東京大学大学院工学系研究科の佐野航季大学院生、物質・材料研究機構(NIMS)国際ナノアーキテクトニクス研究拠点の佐々木高義フェローらの共同研究グループ※は、水に分散した微量の酸化チタンナノシート[1]を数百ナノメートル(nm、1nmは10億分の1メートル)の周期で規則配列させることにより、99%以上が水からなるにも関わらず鮮やかな色を呈し、環境の変化に応じて瞬時に色を変える新材料を開発しました。

可視光波長と同程度(数百nm)の周期構造を持つ材料は、周期長に対応した波長の光を選択的に反射し、色素を持たずとも鮮やかな色を呈します。このような構造体を「フォトニック構造体[2]」と呼び、こうした色を「構造色[2]」といいます。フォトニック構造体は、光の取り出し・閉じ込め・伝搬制御など、光を自在に操るための究極のツールとして期待されています。フォトニック構造体に必要な長周期の高秩序構造を作る上で、通常は無機結晶や有機ポリマーなどの固体材料が使われます。もし流動的な物質を使ってフォトニック構造体を構築できれば、環境や刺激に応じた動的な光の制御が可能となり、フォトニック構造体の用途は飛躍的に拡がります。しかし、秩序性と流動性とは相反するものであり、流動的な物質を使ったフォトニック構造体の構築は極めて困難でした。

共同研究グループは、水に対して1%未満の微量な酸化チタンナノシートを水中に分散した後、ナノシート間に働く静電反発力[3]を極限まで高めることで、分散液中のナノシートが長周期で規則正しく配列され鮮やかな構造色を示すことを見出しました。この分散液は秩序性と流動性を兼ね備えた「動的フォトニック構造体」であり、温度・pH・磁場などの環境の変化に応答し、ナノシートの距離や角度を変えることができます。これに伴い、分散液の構造色は、全可視光領域にわたり瞬時に変化します。

本研究は、革新的研究開発推進プログラム(ImPACT)「超薄膜化・強靭化「しなやかなタフポリマー」の実現」の支援を受けて実施しました。

成果は、英国のオンライン科学雑誌『Nature Communications』(8月30日付:日本時間8月30日)に掲載されました。

続きはソースで

 
ダウンロード (6)

引用元: 【材料科学】環境の変化によって自在に色を変える水 99%以上が水からなる動的フォトニック構造体 [無断転載禁止]©2ch.net

環境の変化によって自在に色を変える水 99%以上が水からなる動的フォトニック構造体の続きを読む

このページのトップヘ