理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

照射

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/02/22(金) 09:05:51.12 ID:CAP_USER
東京工業大学(東工大)、リコー、産業技術総合研究所(産総研)の研究グループは、60mWという低消費電力かつ15cm3という極小サイズの原子時計の開発に成功したことを明らかにした。

■今回開発された小型原子時計。内寸は33mm×38mm×9mm (出所:産総研Webサイト)
https://news.mynavi.jp/article/20190222-775307/images/001.jpg

同成果は、東工大博士後期課程3年生のHaosheng Zhang氏、同大 博士後期課程1年生のHans Herdian氏、 Aravind Tharayil Narayanan氏(元東工大博士研究員)、同大 白根篤史 助教、同大 岡田健一 准教授、リコーの鈴木暢氏(NMEMS技術研究機構)、同 原坂和宏氏(NMEMS)、同 安達一彦氏(NMEMS)、産総研の柳町真也 主任研究員(NMEMS)らによるもの。詳細は米国サンフランシスコで開催された半導体回路の国際会議「ISSCC 2019」にて発表された。

電子技術の発達に伴い、時刻の正確性に対する要求は高まるばかりだが、正確な時を刻むことが可能な原子時計、特に原子にマイクロ波を照射する共振器を持つ従来型の原子時計では、共振器の大きさでサイズが決まるため小型化が難しいという課題があった。

続きはソースで

■量子部パッケージ開発された量子部パッケージ (出所:産総研Webサイト)
https://news.mynavi.jp/article/20190222-775307/images/002.jpg

■開発されたCMOS集積回路 (出所:産総研Webサイト)
https://news.mynavi.jp/article/20190222-775307/images/003.jpg

マイナビニュース
https://news.mynavi.jp/article/20190222-775307/
images


引用元: 【半導体】省エネかつ小型の原子時計、東工大などが開発 - ISSCC 2019[02/22]

【半導体】省エネかつ小型の原子時計、東工大などが開発 - ISSCC 2019の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/12/30(日) 22:29:04.41 ID:CAP_USER
 防衛省は2019年から、低空を飛来する攻撃・偵察型ドローン(小型無人機)や迫撃砲弾の迎撃を目的に、高出力の軍事用レーザー兵器の研究を本格化させる。今年度予算には開発費として87億円を計上。年明けに陸上配備型の研究試作機製作の入札を行い、23年度までに技術的検証を終えたい考えだ。
 レーザー兵器の開発は米国や中国など各国で進められており、米軍は既にレーザー兵器を揚陸艦に搭載して運用を始めている。
 戦闘機のステルス能力向上やミサイルの低高度化・高速化により、迎撃までの対処時間は短くなるばかり。

レーザー兵器は、直進するレーザーを照射して目標を瞬時に破壊することができるため・・・

続きはソースで

(2018/12/30-18:39)

https://www.jiji.com/news2/kiji_photos/20181228axH8K_p.jpg

時事ドットコム
https://www.jiji.com/jc/article?k=2018123000216&g=pol
ダウンロード (2)


引用元: 【軍事技術】防衛省、高出力レーザー兵器開発へ=ドローン、迫撃砲対策[12/30]

防衛省、高出力レーザー兵器開発へ=ドローン、迫撃砲対策の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/15(木) 20:14:35.00 ID:CAP_USER
レーザーを照射することで従来の縫合や接着剤の使用よりも素早くかつ強固に傷をふさぐことが可能となる技術が誕生しました。この技術はアリゾナ州立大学のコーシャル・リージ氏らが開発中のもので、シルクタンパク質と金のナノ粒子を含む素材を、レーザーで傷部分と結合させるというもので、従来よりもはるかに効率的に傷口をふさぐことが可能というものです。

Rapid Soft Tissue Approximation and Repair Using Laser‐Activated Silk Nanosealants - Urie - 2018 - Advanced Functional Materials - Wiley Online Library
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201802874

Star Trek-like Tech Seals Wounds with a Laser - IEEE Spectrum
https://spectrum.ieee.org/the-human-os/biomedical/devices/star-treklike-tech-seals-wounds-with-a-laser

リージ氏らによるレーザーを用いた傷口をふさぐ技術は、記事作成時点ではあくまで概念実証の段階にあるものの、驚くべき効果を発揮しています。実験では「豚の腸」および「マウスの皮膚」にある軟組織創傷を素早くふさぐことに成功しており、例えば豚の腸の場合、従来の縫合よりもレーザーを用いた縫合の方が約7倍も強力に傷をふさぐことが可能で、さらにふさいだ部位は傷を負っていない部位と同じように機能することも明らかになっています。

以下の図は左から「従来の針を用いた傷の縫合」「従来の接着剤を用いた傷の接合」「レーザーを用いた傷をふさぐ方法」による、傷をふさいだ跡の写真および、術後の2日後の写真です。画像の通り、傷をふさいだ際の見た目は接着剤や縫合と同じくらい目立たず、それでいて傷をつなぎ合わせる力は約7倍も強いとのこと。

公表された論文の共同著者であるディーパンジャン・ゴーシュ氏は、「我々は切開部をより早く閉じ、早期に治癒したいと考えています」と語っています。

続きはソースで

https://i.gzn.jp/img/2018/11/15/tech-seals-wounds-laser/s01_m.jpg

GIGAZINE
https://gigazine.net/news/20181115-tech-seals-wounds-laser/
ダウンロード


引用元: 【医療】レーザーで傷口をふさぐSFチックな新技術が登場、縫合や接着剤の約7倍も強力[11/15]

レーザーで傷口をふさぐSFチックな新技術が登場、縫合や接着剤の約7倍も強力の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/04(木) 19:09:42.28 ID:CAP_USER
 光産業創成大学院大(浜松市西区)は3日、次世代エネルギーとして期待されるレーザー核融合発電の実用化に向け、燃料に当てるレーザーの照射率を3・5倍に向上させる技術を開発したと発表した。二つのカメラで燃料へ正確にレーザーを照射し、核融合の発生率を高めて効率的な発電を目指す。レーザー核融合に関する米国学術学会誌の4日付電子版に掲載する。

 レーザー核融合は、燃料の重水素同士をレーザー照射によって結合させた後、中性子とヘリウムに分化する際に発するエネルギーを取り出す。太陽エネルギーの発生と同じ原理で、二酸化炭素(CO2)や廃棄物が少ないクリーンエネルギーとして注目されている。

 同大や浜松ホトニクス、トヨタ自動車など9機関でつくる研究チームは・・・

続きはソースで

http://www.at-s.com/news/images/n55/549143/IP181003MAC000019000_1.jpg

静岡新聞アットエス
http://www.at-s.com/news/article/local/west/549143.html
ダウンロード


引用元: レーザー核融合実用化へ 浜松・光産業創成大学院大[10/04]

レーザー核融合実用化へ 浜松・光産業創成大学院大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/31(火) 23:37:55.40 ID:CAP_USER
マサチューセッツ工科大学(MIT)の研究チームは、半導体チップに実装可能で、安価に製造できる分子時計を開発した。

 この分子時計は、硫化カルボニル(OCS)分子を含むガスに高周波(231.060983GHz)を照射してOCS分子を回転させ、その共振状態を基準クロックとして時間計測する。既存のCMOS製造プロセスを使ってLSIに組み込める。

 実験したところ、1時間当たりの平均誤差は1マイクロ秒未満だったという。この精度は、小型の原子時計に匹敵し、スマートフォンなどで一般的な水晶発振時計の1万倍高い。さらに、原子時計と違って消費電力は66mWと極めて少なく、スマートフォン用チップなどへの実装が可能という。

続きはソースで

https://japan.cnet.com/storage/2018/07/30/6b2033a6ed63538ab4c6fcfe9293e315/2018_07_30_sato_nobuhiko_022_image_01.jpg
https://japan.cnet.com/storage/2018/07/30/f1d14fa75caea0a5bc9326fa00164243/2018_07_30_sato_nobuhiko_022_image_02.jpg

https://japan.cnet.com/article/35123251/
ダウンロード


引用元: 【機械工学】MIT、LSIに搭載可能な安価かつ低消費電力の分子時計を開発--精度は原子時計並み[07/31]

MIT、LSIに搭載可能な安価かつ低消費電力の分子時計を開発--精度は原子時計並みの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/20(金) 23:30:39.88 ID:CAP_USER
対象物に電子線を照射して拡大した像を得る電子顕微鏡は非常に小さいものを見ることが可能で、2018年時点で電子顕微鏡における分解能の世界記録は300keVの高出力の電子線を照射する電子顕微鏡で実現されている「0.5オングストローム(0.05ナノメートル)」となっています。


続きはソースで

Electron ptychography of 2D materials to deep sub-angstrom resolution | Nature
https://www.nature.com/articles/s41586-018-0298-5

A record-breaking microscope
https://www.nature.com/articles/d41586-018-05711-y

Electron microscope detector achieves record resolution | Cornell Chronicle
http://news.cornell.edu/stories/2018/07/electron-microscope-detector-achieves-record-resolution

電子顕微鏡を使用して像を捉えるとき、どうしても像がゆがんだり、ぼやけたりしてしまうことがあります。この収差を補正するために、これまでは補正用のレンズを置いて像をクリアにする方法が取られていました。

ミュラー氏らの研究チームはこの「補正レンズ」をなくすことでこれまで以上に像を拡大し、よりクリアに映し出す方法についての調査を行ってきました。そして、電子検出器のEMPADとX線顕微鏡で使用されてきたタイコグラフィーと呼ばれる技術を組み合わせた手法をミュラー氏らが考案。これにより、研究チームは80keVの低出力の電子線を放出する電子顕微鏡で0.39オングストローム(0.039ナノメートル)という高分解能の像を取得することに成功しました。

研究チームは、実際に開発した技術を使用するとどこまで像がクリアに見えるかを示すため、硫化モリブデン(MoS2)を80keVの従来の電子顕微鏡とミュラー氏らの技術を使用した電子顕微鏡で撮影しています。2つの画像を比較すると、分解能が0.98オングストローム(0.098ナノメートル)である従来の電子顕微鏡で撮影したもの(左)と比べて、ミュラー氏らが考案した手法(右)で撮影した方が鮮明に写っていることがわかります。

https://i.gzn.jp/img/2018/07/20/electron-microscope-record-resolution/01_m.jpg

ミュラー氏らの研究チームによって開発された技術は、低出力の電子線を照射する電子顕微鏡で高分解能を像を取得できることから、電子線によってダメージを受けやすい材料を扱うことが可能です。このため、これまで電子顕微鏡で扱いづらかった材料の調査などで活躍することが期待されています。

https://gigazine.net/news/20180720-electron-microscope-record-resolution/
images


引用元: 【クッキリ鮮明】電子顕微鏡の分解能が0.39オングストロームに到達 世界記録更新

【クッキリ鮮明】電子顕微鏡の分解能が0.39オングストロームに到達 世界記録更新の続きを読む
スポンサーリンク

このページのトップヘ