理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/07(水) 15:09:07.38 ID:CAP_USER
地球の海洋が、これまでの想定の1.6倍も熱を吸収していたことを、プリンストン大学の地球科学者であるLaure Resplandy氏らが研究によって明らかにしました。これまでは、1991年以降、10年ごとに4度ずつ海水温が上昇していると考えられてきましたが、実際には6.5度ずつ上昇していたことが明らかになっています。

Quantification of ocean heat uptake from changes in atmospheric O 2 and CO 2 composition | Nature
https://www.nature.com/articles/s41586-018-0651-8

Startling new research finds our oceans are soaking up far more heat that we realized | Vancouver Sun
https://vancouversun.com/news/world/startling-new-research-finds-our-oceans-are-storing-up-far-more-heat-that-we-thought-suggesting-faster-climate-change/wcm/5c4fffc1-b999-4cd8-afe4-0e8dbd28d1ac

2007年に「ARGO計画」がスタートするまでにさまざまな方法で測定された海水温の記録は間違っているのではないか?ということは、長年持たれてきた疑問です。Laure Resplandy氏らの研究は、この疑問を解明したものになります。

Resplandy氏らが行った研究は、海洋の温度を直接測定するのではなく、過去数十年にわたって酸素と二酸化炭素が海洋から放出された量を測定したもの。いずれの気体も水に溶けますが、温度が上昇すると溶ける量が減少するため、大気中の酸素と二酸化炭素を測定することで、海洋の温度を推定できるわけです。この仕組みについてResplandy氏は「太陽の下に置いておいたコーラがガスを失う」のと同じことだと説明しました。

続きはソースで

https://i.gzn.jp/img/2018/11/05/ocean-heat-uptake/glacier-1740886_1920_m.jpg

GIGAZINE
https://gigazine.net/news/20181106-ocean-heat-uptake/
ダウンロード (3)


引用元: 【環境】海が想定の1.6倍も熱を吸収していたことが判明、地球温暖化への取り組みの見直しが叫ばれる[11/06]

海が想定の1.6倍も熱を吸収していたことが判明、地球温暖化への取り組みの見直しが叫ばれるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/30(火) 14:29:04.68 ID:CAP_USER
レンガは古くから家などの建築材料として使われており、今日でも世界中で広く使用されています。そんなレンガを「人間のオシッコ」を使うことで、高熱で焼き上げることなく常温で作り出すことに南アフリカの学生チームが成功したと報じられています。

World-first: Bio-bricks from urine | UCT News
https://www.news.uct.ac.za/article/-2018-10-24-world-first-bio-bricks-from-urine

ケープタウン大学の土木工学科修士課程に在籍しているSuzanne Lambert氏とVukheta Mukhari氏は、数カ月にわたって革新的な方法でレンガを作り出す方法を実験してきたとのこと。そして2人は、「バイオレンガ」と名付けられたレンガを「人間のオシッコ」を使って作り出すことに成功しました。

バイオレンガの材料となる砂には、「ウレアーゼ」と呼ばれる酵素を作り出す細菌が定着しています。ウレアーゼはオシッコの中に含まれる尿素を分解して炭酸カルシウムを作り出し、レンガを固めるとのこと。

水質工学の講師でありLambert氏の指導教官でもあるDyllon Randall博士は、「このバイオレンガを作り出すプロセスは、貝殻が作られるプロセスと似たものです」と語りました。ウレアーゼが人間のオシッコから作り出す炭酸カルシウムは、砂をあらゆる形に固めることができるそうで、一般的なレンガのような長方形だけでなく、円筒形にも砂を固めることが可能です。

「尿素を利用してレンガを固める」という発想は、数年前にアメリカの研究者が合成溶液を利用した実験を行っていました。しかし、Lambert氏は2017年に共同研究を行っていたスイス人学生のJules Henze氏との基礎研究をもとに、世界で初めて「本物の人間のオシッコ」を利用してレンガを固めることに成功しました。

一般的な焼成レンガは1400度近くの熱を窯の中で加えられ、その過程で大量の二酸化炭素を放出しますが、バイオレンガは室温に置かれた金型の中で作り出すことが可能。

続きはソースで

https://i.gzn.jp/img/2018/10/29/human-urine-bio-brick/00_m.jpg

GIGAZINE
https://gigazine.net/news/20181029-human-urine-bio-brick/
ダウンロード (1)


引用元: 【化学】人間のオシッコ(尿素+炭酸カルシウム)を使ってレンガを常温で作ることに成功[10/29]

人間のオシッコ(尿素+炭酸カルシウム)を使ってレンガを常温で作ることに成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/19(金) 14:20:06.77 ID:CAP_USER
 西暦79年に起きたベスビオ火山の大噴火により、周辺の古代ローマ帝国の都市とその住人は一夜にして消滅した。大量の火山灰がポンペイの町に降り注ぎ、建物はその重みで崩落した。その後激しい火砕流が山肌を駆け降りて町を焼き尽くし、さらに近くの港町ヘルクラネウムや近隣の町をも襲った。

 2000年近く前の噴火がもたらした甚大な被害に疑問を呈する専門家はいないが、多くの犠牲者がどのようにして死んでいったかについては、意外にもまだ多くの論争がある。(参考記事:「古代都市ポンペイは、現代社会にそっくりだった」)

 イタリアの専門家チームは、ヘルクラネウムでもとりわけ残酷な死を迎えた人々の遺骨を再調査し、その結果を2018年9月26日付けで学術誌「PLOS ONE」に発表した。遺跡からは、爆発したと思われる頭骨が見つかっているが、これまで爆発の原因は脳の髄液や軟組織が激しい高熱によって瞬時に沸騰したためと考えられてきた。そして、今回の論文でもそれを支持する証拠が提示されている。

 ところが、この仮説に反対する専門家もいる。ポーランドにあるワルシャワ大学の考古学者エルズビエタ・ヤスクルスカ氏は、論文の主張は「人間の体と骨に熱が与える損傷に関して私が知るあらゆる事実に反している」として反論する。

■古代の楽園を襲った死

 灰、溶岩、有毒ガスから成る火砕流は、温度が摂氏700度に達し、時速80キロで押し寄せる。火砕サージは火砕流に似ているが、主な成分はガスだ。

 ベスビオ山の噴火では火砕流と火砕サージの両方が発生し、どちらに襲われたとしても、飛んできた岩に当たったり、大量の灰やガスを吸引して窒息したり、極度の高熱であっという間に体を焼かれるなど、恐ろしい死を迎えたと考えられる。

 論文の筆頭著者であるフェデリコ2世ナポリ大学病院のピエール・パオロ・ペトローネ氏は、西暦79年のベスビオ火山噴火による犠牲者の研究を数十年間続けている。過去に共同執筆者として関わった2001年の「Nature」や2010年「PLOS ONE」の関連論文では、多くの死を招いた主な要因は灰やガスではなく、高温の熱によるもので、犠牲者は苦痛を感じる間もなくほぼ即死状態だったことを示す証拠が提示された。これは、ほかの研究でも支持されている。

 同じ熱で死んだといっても、ポンペイとヘルクラネウムでは事情が少々異なっていた。火山から10キロほど離れていたポンペイには、まず噴火による砕屑物が降り注いで建物が崩れ、中にいた人々を押しつぶした。その後でとりわけガスを多く含んだ火砕サージが町を襲い、これが原因でほとんどの人が命を落とした。

続きはソースで

■ヘルクラネウム遺跡の火山灰堆積層で発掘された子供と若い成人の骨
https://cdn-natgeo.nikkeibp.co.jp/atcl/news/16/c/101800102/ph_02.jpg

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/16/c/101800102/ph_thumb.jpg

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/16/c/101800102/
ダウンロード (1)


引用元: 恐ろしい大噴火、高熱で脳が沸騰、頭骨が爆発 2千年前のベスビオ火山の噴火研究[10/19]

恐ろしい大噴火、高熱で脳が沸騰、頭骨が爆発 2千年前のベスビオ火山の噴火研究の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/14(日) 19:42:11.72 ID:CAP_USER
うだるような夏の暑さに襲われている時に「どうせならこの暑さを貯めておいて、冬に暖房として使えたらいいのに」などと思ったことがある人もいるはず。現実には熱エネルギーをいつまでも保ち続けることは難しく、夏の暑さを冬に活用することは容易ではなかったのですが、新たに開発が進められているシステム「MOST」は、全く別の方法を用いることで熱を分子の中に閉じ込めて再利用することが可能なシステムとなっています。

Emissions-free energy system saves heat from the summer sun for winter | Chalmers
https://www.chalmers.se/en/departments/chem/news/Pages/Emissions-free-energy-system-saves-heat-from-the-summer-sun-for-winter-.aspx

New emissions-free energy system could save heat from the summer sun for winter
https://knowridge.com/2018/10/new-emissions-free-energy-system-could-save-heat-from-the-summer-sun-for-winter/

MOSTは、ヨーロッパの名門工科大学の一つでスウェーデンにある「チャルマース工科大学」の研究グループによって開発されたシステムです。特殊な分子の中に熱エネルギーを別の形で蓄えることで保存しておき、必要なときに熱に変換してエネルギーを取り出すという仕組みとなっています。


「特殊な分子」は炭素と水素、窒素から成るもので、太陽光を受けた時にエネルギーが豊富な異性体に変換されるという特性を備えています。異性体は、同じ種類の原子を持ちながらも違う構造をしている物質のことを指します。

このシステムでは異性体は液体の形をとっており、エネルギーを蓄えた状態で貯蔵することが可能。そして夜や冬場など必要になったときに熱を取り出すことができます。また、液体であることから既存のソーラーシステムに組み込むことが可能で、MOSTという名称は「Molecular Solar Thermal Energy Storage(分子ソーラー熱エネルギー貯蔵)」から取られています。

続きはソースで

https://i.gzn.jp/img/2018/10/13/molecular-solar-thermal-energy-storage/01_m.jpg
https://gigazine.net/news/20181013-molecular-solar-thermal-energy-storage/
images


引用元: 夏の暑さを閉じ込めておいて冬に使うエネルギー貯蔵システム「MOST」が実用化にむけ研究中[10/13]

夏の暑さを閉じ込めておいて冬に使うエネルギー貯蔵システム「MOST」が実用化にむけ研究中の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/03(月) 13:57:15.41 ID:CAP_USER
 地球のプレート運動は、すばらしい芸術作品を生み出している。地球に山と海があり、恐ろしい地震や激しい火山噴火があり、今この瞬間にも新しい陸地が誕生しているのは、プレート運動がずっと続いているからだ。

 しかし、永遠に存続するものなどない。

 プレートを動かしているのは、その下にあるマントルの熱対流だ。しかし、時間とともにマントルの温度は下がり、やがて、地球全体を覆う“ベルトコンベア”の運動は停止する。
そのとき、炭素循環も、長い歳月にわたって生物進化の原動力となってきた地質活動も終息する。

 このほど、国際地質科学連合の会長で、中国地質大学の地質学者である成秋明氏が、プレート運動が終わる日が訪れる時期を予想した。
成氏の計算によれば、終わりは約14億5000万年後にやってくる。太陽が膨張して赤色巨星になり、私たちを飲み込むのは今から約54億年後と考えられているので、それよりもだいぶ前だ。

 学術誌「Gondwana Research」に8月に発表された論文は論争を呼び、一部の専門家は、プレート運動が終わる日を正確に予想することはできないと主張している。
けれども、地球の地質活動がいつかは停止するという点では、科学者たちの意見は基本的に一致している。

 プレート運動が終わるとき、地球はどんな世界になるのだろう?

■動き続けるジグソーパズル

 まずは、プレート運動(プレートテクトニクス)について理解しておこう。地球は、太陽系が生まれたばかりで非常に高温だった頃、45億4000万年前に誕生した。かつては完全に融けた状態にあったが、形成時の熱と放射性物質が発する熱が逃げていって温度が下がり、最終的に、内核、外核、下部マントル、上部マントル、地殻という層構造に落ち着いた。

 35億年前から6億年前までのどこかの時点で、地殻と上部マントルからなる「リソスフェア」が冷えて密度が高くなり、下部マントルへと沈み込みはじめた。リソスフェアはジグソーパズルのように数十枚のプレートに分割され、地球の表面でぶつかり合い、地質活動の時代が始まった。

 中央海嶺では、地下から上昇してきたマントル物質(マントルプルーム)が冷えて新しい海洋プレートを作る。
一方、プレートの端にあって特に温度が低く、密度の高い部分は、海嶺からプレート全体を遠ざけるように引っ張り、やがてマントルの深部に沈んでゆく(マントル中に沈み込んだ部分は「スラブ」と呼ばれる)。2つのプレートが出会うと、密度が高いプレートが密度の低いプレートの下にすべり込む「沈み込み」という現象が起こり、地表で火山や新しい地殻が形成される。

例えば、2つの大陸プレートが衝突すると、アルプスやヒマラヤのような山脈ができる。また、大陸プレートや海洋プレートの下にマントルプルームがある場合には、地殻やホットスポットの移動に伴い火山が点々と並んでゆく。

 けれどもマントルの温度は徐々に下がってゆくので、いつかは、プレートが沈み込まなくなるほど温度が下がるときがくる。この時期を予想する研究は、過去にもいくつか行われている。

 成氏の今回の論文は、30億年前から現在までの地球のマグマ活動の強さに基づき、数学モデルを利用して、マントルが冷える速度を推定するものだ。これにより、プレート運動が終わる時期を大雑把に知ることができると成氏は言う。

続きはソースで

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/16/b/083100222/ph_thumb.jpg

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/16/b/083100222/
ダウンロード (3)


引用元: 【解説】地球のプレート運動、14.5億年後に終了説「私たちがよく知っているような世界は終わります」と研究者[09/03]

地球のプレート運動、14.5億年後に終了説「私たちがよく知っているような世界は終わります」と研究者の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/29(水) 18:14:23.06 ID:CAP_USER
「体操着のシャツの裾は出した方が涼しい」。前橋市内の中学校で理科を教える富田尚道教諭(61)がサーモグラフィーを使った実験でこんな結果を導き出した。中学校の現場ではシャツの裾入れの指導がされているが、富田教諭は「熱中症対策として検討してほしい」と呼びかけている。

 実験は今年六~七月にかけて実施された。四人の生徒のうち二人はシャツの裾を入れた状態(イン)、二人は出した状態(アウト)で運動し、運動後にサーモグラフィーで体温を測定。二分後に体温を比較すると、アウトの生徒の体温は二九~三〇度とインの生徒よりも四度ほど低くなった。

 富田教諭は今月、高崎市で開かれた科学教育研究協議会の全国研究大会で裾出し実験の結果を発表。

続きはソースで

http://www.tokyo-np.co.jp/article/gunma/list/201808/images/PK2018082902100100_size0.jpg

東京新聞
http://www.tokyo-np.co.jp/article/gunma/list/201808/CK2018082902000183.html
images


引用元: 体操着の裾を出そう 熱中症対策 前橋市の教諭がサーモグラフィー実験[08/29]

体操着の裾を出そう 熱中症対策 前橋市の教諭がサーモグラフィー実験の続きを読む
スポンサーリンク

このページのトップヘ