理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

物質

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/06/27(木) 07:13:11.91 ID:CAP_USER
“夢の物質” 炭素素材の製造技術の開発に成功 名古屋大学
https://www3.nhk.or.jp/news/html/20190627/k10011970331000.html
2019年6月27日
NHK NEWS WEB

※動画あり

 次世代の半導体の材料などとして期待され、
 合成するのが難しいことから夢の物質とも呼ばれる炭素素材の「グラフェンナノリボン」を自在に製造する技術を開発したと名古屋大学のグループが発表し、
 コンピューターの小型化などに応用できる可能性があるとして注目を集めています。

 「グラフェンナノリボン」という物質は、六角形の環状の炭素分子がつながった「ナノメートル」サイズの炭素素材で、
 大きさなどによって電気の通しやすさなどの性質が変化するため、次世代の半導体などへの応用が期待されていますが、
 効率よく合成する方法はなく、夢の物質とも呼ばれています。

続きはソースで

images

引用元: 【化学】“夢の物質” 炭素素材の製造技術の開発に成功 名古屋大学[06/27]

“夢の物質” 炭素素材の製造技術の開発に成功 名古屋大学の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/05/03(金) 01:26:12.17 ID:CAP_USER
(CNN) 地球からおよそ8000光年の距離にあるブラックホールが、プラズマの雲を宇宙空間へ絶え間なく噴出し続けている現象が観測されたと、国際研究チームが4月29日の科学誌ネイチャーに発表した。

「V404シグニ」と呼ばれるこのブラックホールは他のブラックホールと異なり、数分間隔であらゆる方向に向けてプラズマの雲を噴出させていると見られる。

オーストラリア・カーティン大学のジェームズ・ミラージョーンズ准教授は「私が遭遇した中でも極めて特異なブラックホール」と位置付ける。

同氏によると、V404シグニは通常のブラックホールと同様に、周辺の天体をのみこんでガスを吸収しながら物質の渦を形成し、この渦はブラックホールを取り巻いてらせんを描きながら重力に引き寄せられている。

続きはソースで

https://www.cnn.co.jp/storage/2019/05/01/0d860b26ceeaa2287163ddeac3c40ed3/blackhole-wonders-of-the-universe-0430-super-169.jpg
https://www.cnn.co.jp/fringe/35136479.html
ダウンロード (6)


引用元: 【天文学】「極めて特異なブラックホール」、8千光年の彼方で観測[05/01]

「極めて特異なブラックホール」、8千光年の彼方で観測の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/04/02(火) 17:09:52.79 ID:CAP_USER
セントルイスにあるバーガーキングの57店舗で植物由来のハンバーガーの販売が始まった。試験販売に成功すれば、最終的には米国内すべての7200店舗および国外でも販売される可能性がある。

パティには大豆植物の根から抽出された「ヘム」という物質が混ぜてある。 ヘムはすべての生きている動植物に見られる物質だが、特に動物に豊富に含まれている。このパティを開発したインポッシブル・フーズ(Impossible Foods)によると、「肉を肉のような味にするのがヘムです」とのことだ。

このバーガーは牛肉のワッパー(バーガーキングの商品名)に比べると脂肪分が15%、コレステロールが90%少ないが、値段は1ドル高い。

続きはソースで


https://cdn.technologyreview.jp/wp-content/uploads/sites/2/2019/04/02003506/burger-king.jpg
https://www.technologyreview.jp/nl/burger-king-is-going-to-start-selling-a-meat-free-impossible-whopper/
ダウンロード (3)


引用元: 【代用肉】バーガーキング、米国で「0%ビーフ」のワッパーを試験販売[04/02]

【代用肉】バーガーキング、米国で「0%ビーフ」のワッパーを試験販売の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/04/07(日) 18:59:41.21 ID:CAP_USER
2018年ノーベル物理学賞を受賞したフランス人のジェラール・ムールー氏は、特別なレーザー装置を使用することによって、核廃棄物の放射能の分解期間を数千年から数分に短縮することを提案している。ブルームバーグが報じた。

ムールー氏​が提案するの​は、核廃棄物を放射性ではない新​たな原子に​瞬間的に変換する​という方法で、原子レベルでの廃棄物のこうした変換​は高精度レーザーインパルスによって行​われる。そのためにムールー氏は、​米カリフォルニア大学のプラズマ物理学者、田島俊樹教授と共同で・・・

続きはソースで

https://cdn1.img.jp.sputniknews.com/images/610/61/6106139.jpg

https://jp.sputniknews.com/science/201904056106183/
images


引用元: 【物理学】ノーベル物理学賞の受賞者 核廃棄物の処理法を発明[04/05]

ノーベル物理学賞の受賞者 核廃棄物の処理法を発明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/02/21(木) 23:34:01.88 ID:CAP_USER
【2月21日 AFP】
日本では、少し苦味のあるアシタバの葉が健康にいいと長らく考えられてきたが、このほど発表された研究論文によって、これが科学的根拠に基づくものである可能性が出てきた。

 新たに発表された研究では、アシタバに含まれる天然の物質が「細胞の老廃物」除去を助ける重要な作用を促していると考えられるとされた。細胞の加齢に伴い蓄積する老廃物は、さまざまな病気や障害を引き起こす恐れがある。

 オーストリア・グラーツ大学(University of Graz)分子生物科学研究所のフランク・マデオ(Frank Madeo)教授は、AFPの取材に応じ、「医療に関する伝統的な民間伝承の科学的根拠を見つけることは常に素晴らしいことだ」と話した。

 今回の研究に関わったマデオ教授によると、アシタバが促す健康作用は「自食作用(オートファジー)」と呼ばれるプロセスで、アシタバに含まれる物質「4,4'-ジメトキシカルコン(DMC)」によって誘発されているのだという。

 マデオ教授は、「これは掃除とリサイクルの作用だ」としながら、この作用によって「無用な物質、特に凝集タンパク質などの細胞老廃物」が除去されると説明した。

 体の加齢が進む中で、良好な健康状態を維持するためには、この掃除作用が極めて重要となる。細胞が損傷した部分を適切かつ効率的に除去できないと、それが蓄積してがんなどの病気の原因となる恐れもあるためだ。

 いくつかの化合物については、こうした掃除作用を活性化させる働きがあると科学的に証明されている。断食にもこうした「細胞の大掃除」を自然に促す作用があるとされる。

 だが、細胞を保護し時計の針を元に戻す能力を持つ化合物の領域を拡大することを目的に、研究チームは今回、「フラボノイド類」と呼ばれる物質に着目した。フラボノイド類の多くは、抗炎症特性から脳の変性やがんの予防まで、さまざまなプラス効果を持つ。

 実験を進めるにあたって研究チームは、細胞の破壊的な加齢を防ぐ助けとなるフラボノイド類が見つかるかもしれないとの推論を立てた。その上で、フラボノイドのさまざまな下位分類に当たる化合物180種をスクリーニングで選別し、「加齢に関連した細胞死に対抗できる」自然の能力を持つと考えられる候補を探した。

続きはソースで

(c)AFP

http://afpbb.ismcdn.jp/mwimgs/9/e/320x280/img_9e6b16753f1efed1af08e62c9341df66111563.jpg

http://www.afpbb.com/articles/-/3212303
ダウンロード (2)


引用元: 【生物学】アシタバは「不老長寿の薬」なのか、老化防止化合物発見 研究[02/21]

アシタバは「不老長寿の薬」なのか、老化防止化合物発見 研究の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/03/02(土) 12:46:49.36 ID:CAP_USER
早稲田大学と青山学院大学の共同研究で、冷やすと膨張する物質「逆ペロブスカイト型マンガン窒化物」の「負の熱膨張」メカニズムが世界で初めて解明された。

 通常、物質は冷やすと収縮し、温めると膨張するが、逆ペロブスカイト型マンガン窒化物は冷やすと大きな体積膨張を示すことが知られる。しかし、なぜ冷やすと膨張するのかという物理的なメカニズムは40年以上も謎だった。

 一方、逆ペロブスカイト型マンガン窒化物は、温度降下にともないマンガンイオン上の電子のスピンが整列することも知られている。そこで今回の研究では、「電子スピンの整列現象」と「負の熱膨張現象」の関係性に注目した。

 研究グループはまず、電子スピン間に、スピン同士を反平行に揃えようとする相互作用と平行に揃えようとする相互作用の2種類が働いていることを突き止めた。

続きはソースで

論文情報:【Physical Review Materials】Theory of magnetism-driven negative thermal expansion in inverse perovskite antiferromagnets
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.024407

https://univ-journal.jp/24972/
images (2)


引用元: 【材料工学】冷やすと膨張する物質の「負の熱膨張」メカニズム解明 早稲田大学と青山学院大学[03/02]

冷やすと膨張する物質の「負の熱膨張」メカニズム解明 早稲田大学と青山学院大学の続きを読む

このページのトップヘ