理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

物質

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/14(土) 12:44:23.74 ID:CAP_USER
京都大学(京大)は4月11日、量子ビットの「純粋化量子もつれ(Entanglement of Purification)」と呼ばれる情報量を計算する幾何学的公式を発見したと発表した。

同成果は、京大 基礎物理学研究所の修士課程学生である梅本滉嗣氏と同 高柳匡 教授らの研究グループによるもの。詳細は英国の学術誌「Nature Physics」に掲載された。

ミクロな世界を支配する物理法則は量子論と呼ばれており、また物質のミクロな構造のなかに含まれる情報の基本単位を量子ビットと呼ぶ。そして、重力の理論と量子論を融合して、宇宙の統一理論の構築を目指す分野が超弦理論(超ひも理論)だ。

超弦理論では、D次元の反ドジッター宇宙の重力の物理法則は、D-1次元の物質の物理法則と同じである、つまりゲージ理論と重力理論を統一的に扱うことが可能であるとする「ゲージ・重力対応」という考え方が1997年に発見された結果、現在では、これら2つの物理法則が同じであるという多数の具体的な証拠が示されながらも、このゲージ重力対応の基礎的なメカニズムについては、まだよく分かっていないという。

そうした中、2006年に高柳教授ならびに笠真生 シカゴ大学 准教授(現在)が「笠-高柳公式」とも呼ばれる「ゲージ重力対応における量子もつれエントロピー(Entanglement Entropy)の面積公式」を発見。物質の量子もつれエントロピーの大きさは、反ドジッター宇宙の最小断面積と等しい、つまり、物体Aと物体Bの2つの間に共有される量子ビットの情報量(相関)は、物体に対応する宇宙の最小断面積に等しい、ということを示したことにより、近年では「重力理論における宇宙は、量子ビットの集合体と見なせる」という考え方が生み出され、世界中で研究が進められるようになっている。しかし、この公式で正しく情報量が計算できるのは、AとB以外には物体が存在しない場合に限られるという制限があった。

続きはソースで

https://news.mynavi.jp/article/20180413-616137/

図:反ドジッター宇宙の境界にAとBの空間領域をとると、AとBをつなぐトンネルを反ドジッター宇宙の内部に作ることができる (出所:京都大学Webサイト)
https://news.mynavi.jp/article/20180413-616137/images/001l.jpg
ダウンロード


引用元: 【物理】京大、ミクロな情報量を計算する幾何学的公式を発見「重力理論の宇宙は、量子ビットの集合体と見なせる」

京大、ミクロな情報量を計算する幾何学的公式を発見「重力理論の宇宙は、量子ビットの集合体と見なせる」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/14(土) 15:39:17.47 ID:CAP_USER
ダークマターとは宇宙空間の約25%を占める仮説上の物質であり、間接的に存在を示唆する観測結果は得られているものの、実際のところダークマターとは何であるのかは不明です。ダークマターの正体としてニュートリノなどが考えられていますが、「アクシオン」という仮説上の素粒子も候補の一つに挙げられています。そんなアクシオンを検出する最新機器の開発に研究者たちが成功したという報告が、Physical Review Lettersという物理専門雑誌に発表されました。

After 30 years of R&D, breakthrough announced in dark matter detection technology, definitive search to begin for axion particles | UW News
http://www.washington.edu/news/2018/04/09/admx-detection-technology/

アクシオンはもともと、素粒子物理学上の未解決問題である「強いCP問題」を解決する存在として期待されていた未発見の素粒子でしたが、研究が進むにつれてダークマターの候補としても注目を集めるようになりました。
そんなアクシオンの検出を目的としたThe Axion Dark Matter eXperiment(ADMX)は、30年以上にわたって研究開発が行われてきました。

ADMXはワシントン大学を拠点としてフェルミ国立加速器研究所が開発を行っているアクシオン検出器であり、超伝導磁石で覆われた地下に設置されています。アクシオンはほとんど物質と干渉することはないとされていますが、強い磁場と低温に調整されたADMX内でアクシオンが電磁波へと変換され、その時に放出される光子の周波数をADMXは検出できるそうです。

「AMラジオのようなものだと考えてもらって構いません」とワシントン大学のグレイ・リブカ准教授は語り、一定の周波数を探索するADMXの特性について説明しました。

続きはソースで

関連ソース画像
https://i.gzn.jp/img/2018/04/14/axion-particles-detection-technology/01_m.jpg

GIGAZINE
https://gigazine.net/news/20180414-axion-particles-detection-technology/
images (2)


引用元: 【物理学】ダークマターの正体かもしれない謎の粒子「アクシオン」を検出する最新機器の開発に成功[04/14]

ダークマターの正体かもしれない謎の粒子「アクシオン」を検出する最新機器の開発に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/06(金) 09:32:04.95 ID:CAP_USER
【4月5日 AFP】
約137億年前の宇宙誕生時、ビッグバン(Big Bang)によって物質と反物質の粒子が対を成して生成された。
物理学の通説ではそうなっている。

 だが、現在の宇宙で見ることができる、地球上の小さな昆虫から宇宙にある巨大な星までのあらゆるものは物質の粒子でできており、それと対を成す反粒子はどこにも見つからない。

 欧州にある巨大な地下素粒子実験施設の物理学者チームは4日、実験室内で作った反物質の粒子「反水素原子」の前例のない観測を通じて、この謎の解明に一歩近づいたとする研究結果を発表した。

 欧州合同原子核研究機構(CERN)の「ALPHA(Antihydrogen Laser Physics Apparatus)」実験チームのジェフリー・ハングスト(Jeffrey Hangst)氏は「われわれが探究しているのは、通常物質の水素と反物質の反水素が同じように振る舞うかどうか(を確かめること)だ」と話す。

 挙動にほんのわずかでも違いが見つかれば、物質と反物質の見かけ上の不均衡を説明する助けになるばかりか、宇宙を構成する基本素粒子とそれらを支配する力を記述する物理学の主流理論「標準模型(Standard Model)」が揺るがされる可能性がある。

 だが、ややがっかりなことに、今回の最新研究の「これまでで最も高精度の実験」でも、水素原子と反水素原子の挙動に違いは見つからなかった。

 目に見える宇宙の構成要素と挙動を記述する標準模型は、反物質の「消滅」を説明できない。

 ビッグバンでは、質量が同じで電荷が逆の粒子と反粒子のペアが生成されたと広く考えられており、粒子と反粒子が出会うとエネルギーだけを残して消える「対消滅」が起きるとされる。

 物理学では、ビッグバンの直後に物質と反物質が反応して崩壊する現象が実際に起きたと考えられている。

続きはソースで

(c)AFP

画像:欧州合同原子核機構のリニア・アクセレレーター
http://afpbb.ismcdn.jp/mwimgs/7/e/700x460/img_7e85d86633b483b71439aeac5309f0b6164808.jpg

AFP
http://www.afpbb.com/articles/-/3170130
images (1)


引用元: 【物理学】反物質「消滅」の謎、解明に一歩前進 CERNチーム

反物質「消滅」の謎、解明に一歩前進 CERNチームの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/05(木) 12:01:32.70 ID:CAP_USER
インペリアル・カレッジ・ロンドン(ICL)などの英国研究チームは、光が相互作用して物質化する「ブライト-ホイーラー過程」と呼ばれる現象を実証するための実験を開始すると発表した。

ブライト-ホイーラー過程は、1934年に物理学者グレゴリー・ブライトとジョン・ホイーラーによって予想された物理現象であり、2個の光子が高エネルギーで衝突することによって物質粒子である電子と陽電子が1個ずつ生成される。

光子の衝突エネルギーを極めて高くする必要があるために、これまでは、ブライト-ホイーラー過程を実験的に確かめることは不可能であると考えられてきた。
しかし、2014年になってから、核融合の研究で使われている高出力レーザーを利用することによって
既存の技術でも実験を実現できるというアイデアが提案された。
今回の研究は、このアイデアにもとづいて実際の実験装置を組み上げて、ブライト-ホイーラー過程の実証を目指して行われたもの。

2014年に提案された実験方法では、まず第1段階として、超高強度のレーザーを用いて、電子を光速近くまで加速する。
すると、この電子を金平板に衝突させることによって可視光の10億倍という高エネルギーの光子ビームを生成する。

第2段階では、金の微小空洞の内部表面に高エネルギーのレーザーを照射して、熱放射場を発生させる。
この熱放射場からは恒星が光を発するのと同じように光が放射される。

次に、第1段階の高エネルギー光子ビームを、第2段階の金空洞の中心部に向けて打ち込む。

続きはソースで

画像:ブライト-ホイーラー過程を検証するための実験装置。高エネルギーのレーザービーム2本を衝突させて光子から電子と陽電子を生成させる (出所:ICL)
https://news.mynavi.jp/article/20180402-610233/images/001.jpg
画像:実験用チャンバの光学系 (出所:ICL)
https://news.mynavi.jp/article/20180402-610233/images/002.jpg

マイナビニュース
https://news.mynavi.jp/article/20180402-610233/
ダウンロード


引用元: 【物理学】光を物質化する実験開始 - 「ブライト-ホイーラー過程」を実証へ[04/02]

光を物質化する実験開始 - 「ブライト-ホイーラー過程」を実証への続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/03/20(火) 14:10:55.91 ID:CAP_USER
英国の理論物理学者スティーブン・ホーキング博士が3月14日、76歳で死去した。
1970年代に、ひとたび飲み込まれたら光でさえ絶対に逃げだせないとされていたブラックホールが「真っ黒」ではなく、光の一部は特異点の周囲の「事象の地平線」から逃げ出せることを明らかにして、
物理学界に衝撃をもたらしたことで知られる。

 これをきっかけに、量子力学のレンズ越しにブラックホールを研究するという、まったく新しい手法が誕生することになった。
しかし、宇宙の性質に関するホーキング氏の驚くべき発言はそれだけではない。
ホーキング博士の40年以上にわたる研究生活において話題になった有名な賭けや、刺激的な発言のいくつかを振り返ろう。

■ブラックホールをめぐる賭け

 ホーキング博士のブラックホール研究はあまりにも有名なので、博士がかつてブラックホールを否定するほうに賭けていたと聞いたら、意外に思われるかもしれない。
しかし、茶目っ気のある博士は、昔から科学的な問題についていくつも有名な賭けをしていて、その多くに負けている。

 1974年12月10日、ホーキング博士はカリフォルニア工科大学の理論物理学者キップ・ソーン氏と、銀河系内の巨大なX線源であるはくちょう座X-1がブラックホールであるかどうかをめぐって賭けをした。
実は二人とも、はくちょう座X-1がブラックホールであることをほぼ確信していたが、ホーキング博士はブラックホールではないほうに賭けることを選んだ。

 博士は1988年の著書「A Brief History of Time」(邦訳「ホーキング、宇宙を語る」1989年)の中で、「私にとって、それは保険のようなものだった。ブラックホールについてたくさんの研究をしてきたので、ブラックホールが存在しないことが明らかになった場合には、すべてが無駄になってしまうからだ」と書いている。
「ブラックホールが存在しないほうに賭けておけば、少なくとも賭けには勝ったという慰めを得ることができるし、雑誌『Private Eye』4年分も手に入る」

 今では、はくちょう座X-1はブラックホールであることが広く受け入れられている。
また、2016年の重力波の発見によって、ブラックホールの存在はいっそう確実なものになっている。

 それからおよそ四半世紀後の1997年、ホーキング博士は、ソーン氏とカリフォルニア工科大学の理論物理学者ジョン・プレスキル氏とともに、ブラックホールをめぐる別の賭けを始めた。賭けの対象になったのは、ブラックホールの中に物質が落ち込むときに、物質に関する情報も失われるかどうかである。ソーン氏とホーキング博士は、ブラックホールに飲み込まれた情報が(量子力学に反して)失われるほうに賭け、プレスキル氏は情報が失われないほうに賭けた。

続きはソースで

関連ソース画像
http://natgeo.nikkeibp.co.jp/atcl/news/18/031600121/ph_thumb.jpg

ナショナルジオグラフィック日本版サイト
http://natgeo.nikkeibp.co.jp/atcl/news/18/031600121/
ダウンロード (1)


引用元: 【宇宙物理】追悼:ホーキング博士、意外にも「ブラックホールが存在しない」に賭けていた!ヒッグス粒子が見つからないに100ドル

【宇宙物理】追悼:ホーキング博士、意外にも「ブラックホールが存在しない」に賭けていた!ヒッグス粒子が見つからないに100ドルの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/03/06(火) 18:46:41.65 ID:CAP_USER
年明けの1月11日、雑誌「Nature communications」に一報の論文が発表されました。

 「Discovery of Superconductivity in Quasicrystal」。
日本語なら「準結晶中での超伝導状態の発見」とでも訳しましょうか。

 名古屋大学、豊田工業大学、東北大学、豊田理化学研究所などのグループが達成した、人類史的な価値をもつ大業績と思います

 一定の確率でノーベル賞が出て不思議ではない驚くべき成果ですが、ことさらに大メディアが騒ぎ立てたりすることはありませんでした。

 まあ、記事の編集担当デスクが理解できなければ仕方のない、いつものことですが、今回はこの「準結晶の超伝導」の何が凄いのか、簡単に解説してみたいと思います。

■準結晶とは何か?

 まず最初に「準結晶(Quasicrystal)」とは何か、から話を始めなければなりません。
ワープロに「じゅんけっしょう」と入力すると「準決勝」と変換される程度に、世間にはほとんど知られていない物質の形態と思います。

 原子分子レベルで見ると「結晶」は、ちょうど公園などにあるジャングルジムのようにアトムが規則正しく並んだ構造を取っています。

 こうした「結晶」は「並進対称性」と呼ばれる規則性を持ちます。
分かりやすい例としてオランダの版画家M.C.エッシャーの作品をリンクしておきましょう。

 例えばこの「鳥による平面の規則分割
(参照=http://www.mcescher.com/gallery/back-in-holland/regular-division-of-the-plane-with-birds/)」という作品は、ちょうど、床や壁をタイルで覆い尽くすような意味で、2次元平面を完全に充填します。

 ここで、一部を切り出して別の部分に平行移動すると、完全に重なり合う。
こういう特徴を「並進対称性」といいます。

 さて、世の中にはこういう充填とは別に、平行移動では決して重なり合わない、面や空間の充填の仕方があります。

 例えば、イスラム教のモスク建築には、壮麗な幾何学模様のタイル張りの埋め尽くしが見られます。

 いくつか例を挙げて見ましょう。

 例えばこういうもの(参照=https://en.wikipedia.org/wiki/Girih_tiles)はギリーと呼ばれます。
英文のイスラム文様のウィキペディアには、尖塔の屋根を埋め尽くす曲面パターン
(参照=https://en.wikipedia.org/wiki/Islamic_geometric_patterns)なども紹介されています。

 あるいはこんなもの(参照=http://archive.aramcoworld.com/issue/200905/the.tiles.of.infinity.htm)もある。

 最後のリンクには、こうしたモザイクの幾何学模様を数学的に整理した英国の数理物理学者ロジャー・ペンローズ
https://en.wikipedia.org/wiki/Roger_Penrose)の名が挙げられています。

 ペンローズは1974年、2種類のひし形を組み合わせて空間を充填しながら、決して平行移動では重ね合わせができないパターンを見出し発表します。

 「ペンローズ・タイル」と呼ばれるパターンで、非周期的でありながら空間を埋め尽くす特異な幾何学構造として注目を集めます。

 ペンローズとエッシャーの間には親交があり、ペンローズの見出した数理構造に影響を受けた作品をエッシャーは発表しましたが、残念ながら版画家は1972年に亡くなってしまいました。
そのためペンローズ・タイルの幾何を応用した作品は残されていません。

続きはソースで

画像:すでに様々に利用されている超電導。
写真は超電導磁石を使った独西部グライフスバルトのマックスプランク・プラズマ物理学研究所にある核融合装置「ベンデルシュタイン7-X」。
http://afpbb.ismcdn.jp/mwimgs/d/6/600w/img_d6f6919603dce4f3d888c74c10696df8201375.jpg

JBpress
http://jbpress.ismedia.jp/articles/-/52503
ダウンロード


引用元: 【物理学】ノーベル賞間違いなし、日本発「準結晶超伝導転移」[03/06]

ノーベル賞間違いなし、日本発「準結晶超伝導転移」の続きを読む
スポンサーリンク

このページのトップヘ