理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

生成

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/11(日) 19:17:21.50 ID:CAP_USER
 九州大学と九州工業大学の研究グループは、立方晶fcc(面心立方格子)構造を有する鉄鋼において、水素含有量が増加するほど立方晶hcp(六方最密構造)相の生成が抑制されることを世界で初めて発見した。

 鉄鋼の強さと機能性は、結晶構造によって変化し、結晶構造は、鉄に添加する元素の種類や量によって変わる。従来、水素はfcc→hcp結晶構造変化を「促進」することが定説となっていた。

 しかし本研究では、水素を含ませた鋼材の挙動調査で、水素がfcc→hcp結晶構造変化を「顕著に抑制」することを発見。水素の含有量を調整した試料を冷却しながらhcp相分率を測定したところ、試料中の水素量が多いほどhcp相分率が増加せず、fcc-hcp変態が抑制されていることがわかったという。これは世界で初めて観測された現象であり、これまでの常識を打ち破るものだ。

続きはソースで

論文情報:【Scientific Reports】An unconventional hydrogen effect that suppresses thermal formation of the hcp phase in fcc steels
https://www.nature.com/articles/s41598-018-34542-0

https://univ-journal.jp/23459/
images


引用元: 鉄鋼中の水素が結晶構造変化を抑制 九州大学と九州工業大学が発見 鋼材の高品質化・高強度化に向けた研究開発に貢献

鉄鋼中の水素が結晶構造変化を抑制 九州大学と九州工業大学が発見 鋼材の高品質化・高強度化に向けた研究開発に貢献の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/28(日) 13:31:59.13 ID:CAP_USER
 名古屋大学大学院工学研究科の新津葵一准教授らの研究グループは、世界最小クラスのコンタクトレンズ方式の血糖モニタリング装置の試作に成功した。

 糖尿病治療や予防においては、患者自身が血糖値を持続的に把握することが重要である。血糖値の測定には、従来、皮下にセンサーを埋め込むなどの侵襲性(体内に傷をつける)のある装置が主流であった。低侵襲性のものとして、血糖濃度と相関のある涙液糖濃度に着目したコンタクトレンズ方式の装置が注目を浴びているものの、電気を供給するためのメガネ型端末など別の装置が必要となるため、就寝時や運動時の測定がしづらく、普及が進んでいないのが現状であった。

続きはソースで

論文情報:【Proceedings of IEEE Biomedical Circuits and Systems Conference】A 385μm × 385μm 0.165 V 0.27 nW Fully-Integrated Supply-Modulated OOK CMOS TX in 65nm CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens
https://www.epapers.org/biocas2018/ESR/paper_details.php?PHPSESSID=ok076vdjtkiu7kett65d8hk0g0&paper_id=6237

https://univ-journal.jp/23319/
ダウンロード (2)


引用元: 【医学】血糖をモニタリングするコンタクトレンズ型装置の試作に名古屋大学が成功[10/28]

血糖をモニタリングするコンタクトレンズ型装置の試作に名古屋大学が成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/21(日) 19:46:04.57 ID:CAP_USER
 京都大学の坂本智子特定研究員らの研究グループは、精巣内に存在する「セルトリ細胞」と精◯細胞の相互作用によって正常な精◯の形態が生成される過程を明らかにし、セルトリ細胞内の「アクチン細胞骨格系」の異常が男性不妊の原因の一つとなることを示した。男性不妊の新しい治療法の開発が期待される。

 近年、少子化が社会的な問題になっており、不妊の診断及び治療が喫緊の課題となっている。妊娠を望むカップルのうち約 10~15%が不妊であり、その約半数は男性側に原因があると考えられている。男性不妊の原因の多くは精◯形成障害だが、原因が不明で根本的な治療法はない。しかし、これまでの研究報告から、正常な精◯の形成には、精◯細胞と、精巣内に存在する支持細胞であるセルトリ細胞との密接な相互作用が重要であることは分かっていた。

続きはソースで

論文情報:【PLOS Biology】mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2004874

https://univ-journal.jp/23222/
ダウンロード (3)


引用元: 【医学】京都大学が男性不妊の原因の一端を解明、新治療法の開発期待[10/21]

京都大学が男性不妊の原因の一端を解明、新治療法の開発期待の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/18(土) 12:20:24.91 ID:CAP_USER
大自然は弱肉強食、食うか食われるかの世界だ。生きものたちは、多様な戦略で生存競争を繰り広げている。昆虫の餌になりやすい植物も、昆虫の天敵を利用した実に巧妙な生き残り策で被害を減らしている。だが最近の山口大などのチームの研究で、繭が絹糸の原料になることで知られるカイコは、植物を上回る高度な戦略で天敵を封じ「餌食べ放題」の状態を実現していることが分かってきた。

■天敵のハチやハエを呼び寄せて害虫駆除

 動くことができない陸上の植物は葉や茎を食べられる被害を軽減するため、さまざまな自衛策を持っている。その一つが「みどりの香り」というものだ。チョウやガなどの幼虫が葉や茎をかじり、細胞が壊れた際に生成して放出するヘキセナールという揮発性の化合物で、しばしば「青くさい草の香り」と表現される。

 この香りは、幼虫の天敵であるハチやハエを呼び寄せる。誘因されたハチやハエは幼虫に卵を産み付けたり食べさせたりする。卵は体内で孵化(ふか)し、幼虫の体を食い荒らして死なせる。こうして、植物は自分の葉や茎を食べる害虫を駆除しているのだ。

 「植物の間接防衛」と呼ばれる仕組みで、約30年前に発見された。陸上植物のほぼ全てが持つ機構で、モンシロチョウの幼虫に食い荒らされることが多いキャベツが、幼虫の天敵の寄生バチ「アオムシサムライコマユバチ」を呼び寄せることがよく知られている。

ハチやハエの仲間は嗅覚に優れ、微弱な香りも嗅ぎつけることができる。チームの一員である高林純示・京都大教授らが2012年に発表した論文では、最大70メートル離れたみどりの香りに誘因されたことが報告されている。そのため、植物にとってかなり強力な自衛手段となっているのだ。

続きはソースで

https://www.sankei.com/images/news/180818/prm1808180014-p1.jpg
https://www.sankei.com/premium/news/180818/prm1808180014-n1.html
images


引用元: 【生物】カイコの高度な生き残り術 「天敵呼ぶ香り」封じて餌食べ放題[08/18]

カイコの高度な生き残り術 「天敵呼ぶ香り」封じて餌食べ放題の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/04(火) 13:42:25.45 ID:CAP_USER
 新エネルギー・産業技術総合開発機構(NEDO)と人工光合成化学プロセス技術研究組合(ARPChem)は、東京大学とともに、太陽電池材料として知られるCIGSをベースとした光触媒で、非単結晶光触媒の中で水素生成エネルギー変換効率(光触媒の水素生成能力を表す性能指数)12.5%を達成したと発表した。

 NEDOは、環境に優しいモノづくりを実現するために、太陽光のエネルギーで水から生成した水素と、工場などから排出されるCO2を合成して、プラスチック原料などの基幹化学品(C2~C4オレフィン)製造プロセスを実現するための基盤技術開発に取り組んでいる。太陽光は光触媒を活用することでエネルギー源として有効に活用することが可能であり、そのため、光触媒のエネルギー変換効率の向上が重要な課題になる。

 今回、NEDOとARPChemは、東京大学とともに、太陽電池材料として知られるCu(In,Ga)Se2(略称CIGS)をベースに、太陽光のスペクトル強度がピークとなる可視光領域(波長400n~800nm)の光を吸収する光触媒材料を開発した。

 光触媒は、太陽光エネルギーを化学エネルギーに変換する機能性材料。太陽光の強度のピークは主に可視光領域(400~800nm)にあるため、この波長域の光を吸収する光触媒ができれば、効率よく太陽光のエネルギーを利用できる。しかし、従来の光触媒は、吸収波長が主として紫外光領域(~400nm)に限られるものが多く、可視光から赤外光領域にかけての光を利用できるように、光触媒の吸収波長を長波長化することが課題の一つだった。

 このため、同プロジェクトでは従来よりも長波長の光を吸収する光触媒材料の一つとして、カルコゲナイド系材料(硫化物、セレン化物、テルル化物などの化合物)の開発を進めてきた。中でもCu(In1-x,Ga x)Se2(CIGS)は赤外領域までの太陽光(xの組成比により750~1230nmまで変化)を利用できるという特徴を持ち、既に太陽電池材料としてメートルスケールの製造技術が確立されている。

 このCIGSはp型半導体であり、その表面にn型半導体を成膜しpn接合を構成することで、光照射によりCIGS固体内で生成した電子と正孔を効率的に分離し、再結合を抑制させることで高い量子効率を得られることが知られていた。今回の研究ではこれらの知見を参考にした上で、二つの工夫により、CIGS中で光照射により生じた電子を用いて、水から高効率で水素を生成させることに成功した。

 工夫の一つは、新規組成のCIGSの開発にある。これにより、高負荷条件ではCIGSとn型半導体の間の障壁が原因で電子が注入されにくくなり、結果的に効率が顕著に低下してしまうという課題をクリアした。もう一つは、大電流密度で水分解反応を進行すると、液相側の電気抵抗をはじめとした効率低下要因が顕在化することを生かした点だ。電解液の成分などを最適化することにより、効率的に水素が得られるようになった。

続きはソースで

■CIGSをベースとした水素生成光触媒の外観(約5cm角)
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo01.jpg
■最適組成の電解液中における、開発した水素生成光触媒の電流電位曲線(左)と水素生成エネルギー変換効率(右)
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo02.jpg
■左は開発した水素生成光触媒と酸素生成光触媒を用いた2段型セル(タンデム配置)の模式図、右は2段型セルに疑似太陽光を照射した時の太陽光エネルギー変換効率
http://image.itmedia.co.jp/smartjapan/articles/1809/03/rk_180903_nedo03.jpg

http://www.itmedia.co.jp/smartjapan/articles/1809/03/news023.html
ダウンロード (5)


引用元: 【光触媒】「人工光合成」実現を後押し、世界最高の水素変換効率12.5%を達成[09/03]

【光触媒】「人工光合成」実現を後押し、世界最高の水素変換効率12.5%を達成の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/29(水) 13:10:06.85 ID:CAP_USER
【8月29日 AFP】
物理学者チームは28日、物質に質量を与えるとされる素粒子「ヒッグス粒子(Higgs boson)」が、「ボトムクォーク」と呼ばれる素粒子へと崩壊する現象の観測に初めて成功したと発表した。ヒッグス粒子の存在を突き止めてから6年、ようやくその努力が報われた形だ。

 欧州合同原子核研究機構(CERN)の発表によると、理論的に予測されていたこの崩壊は、スイスにある世界最大の粒子加速器「大型ハドロン衝突型加速器(LHC)」で観測されたという。LHCはノーベル賞受賞につながった2012年のヒッグス粒子発見で知られる。

 CERNのATLAS国際共同研究チームは、今回LHCで実証された「観測が非常に困難な相互作用」について、「LHCの初期の準備段階では、このような観測を成し遂げることは難しいだろうとの考えがあった」と述べている。

 ヒッグス粒子自体が見つけるのが難しい上、他の粒子もボトムクォークに崩壊するため、これまでその崩壊がヒッグス粒子のものであることを明確に突き止めることは困難だった。

 長年待ち望まれていた今回の観測結果は、物理学の「標準模型(Standard Model)」理論のさらなる裏付けとなると、研究者らは指摘する。標準模型は、宇宙を構成する基本粒子とそれらを支配する力に関する主流の理論となっている。

 1970年代初めに確立された標準模型の下では、クォークとレプトンが物質の最も基本的な構成単位とされている。

続きはソースで

(c)AFP

http://afpbb.ismcdn.jp/mwimgs/f/4/320x280/img_f409483a27971a1058808286555aaf25288922.jpg

AFP
http://www.afpbb.com/articles/-/3187660
ダウンロード (1)


引用元: 【物理学】ヒッグス粒子の崩壊、LHC実験で初観測 発見から6年[08/29]

ヒッグス粒子の崩壊、LHC実験で初観測 発見から6年の続きを読む
スポンサーリンク

このページのトップヘ