理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

磁場

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/19(火) 14:20:23.64 ID:CAP_USER
地磁気とは地球内部のコアによって発生している磁場のことであり、南極側がN極、北極側がS極となっています。いくつかの動物は地磁気を感知して利用することが知られていましたが、これまでのところ人間が磁場を感知できるのかどうかは明らかになっていませんでした。カリフォルニア工科大学の生物学・生物工学部教授である下條信輔氏らの研究チームは、人間の脳波を観察しながら磁場を変化させる実験を行い、「人間が磁場を感じ取ることができる」という証拠を発見したと発表しました。
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/03_m.jpg

Transduction of the Geomagnetic Field as Evidenced from Alpha-band Activity in the Human Brain | eNeuro
http://www.eneuro.org/content/early/2019/03/18/ENEURO.0483-18.2019

New evidence for a human magnetic sense that lets your brain detect the Earth's magnetic field
https://theconversation.com/new-evidence-for-a-human-magnetic-sense-that-lets-your-brain-detect-the-earths-magnetic-field-113536

Scientists Find Evidence That Your Brain Can Sense Earth's Magnetic Field
https://www.livescience.com/65018-human-brain-senses-magnetic-field.html
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/img-snap09477_m.png

コンパスのN極が北を向くのは地磁気の働きによるものですが、地磁気は地球の表面においてはかなり弱く、せいぜい冷蔵庫に貼り付くマグネットの100分の1程度の磁力しかありません。しかし、地球には磁場を感じ取り、ナビゲーションに役立てている動物も存在します。たとえば渡り鳥やウミガメといった動物は、地球の磁場を利用して方角や場所を判断しています。

その一方で、人間が磁場を感知できるのかどうかという疑問には、長年にわたって答えが出ていませんでした。人間が磁場を感知できるという説に好意的な研究結果もあれば否定的な結果もあり、何十年にもわたって意見の一致を見なかったとのこと。

長らく人間の磁場感知能力について確かな意見が出なかったのは、過去の研究の多くが「日常的な人間の感覚」に頼っていたからだと研究チームは考えています。ほぼ全ての人間は日常生活において磁場を意識することはなく、たとえ磁場が日常生活に影響を及ぼしていたとしても、それは無意識的か非常にかすかなものにとどまります。そこで、生物学者や認知神経学者などを含んだ下條氏らの研究チームは別のアプローチを取り、神経科学的な証拠を発見しようと試みました。
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/01_m.png

研究チームは成人した34人の被験者に導体で囲まれた特殊なファラデーケージに座って目を閉じてもらい、被験者の脳波を観察しました。ファラデーケージはワイヤーに電流を通すことで制御された磁場を発生させることが可能な造りとなっており、研究チームはケージ内の磁場を自由に操ることができたとのこと。ファラデーケージに特殊な磁場を発生させていない状態では、実験が行われた場所である北緯60度の位置に等しい磁場がケージ内にかかっていたそうです。

通常、人々の日常生活で頭をくるりと回したり、前後の向きを入れ替えたりすると、脳に対して磁場の方向が相対的に変化します。

続きはソースで
ダウンロード (2)


引用元: 【地磁気】「人間は地球の磁場を感じ取ることができる」という証拠を研究者が発見[03/19]

「人間は地球の磁場を感じ取ることができる」という証拠を研究者が発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/25(金) 16:55:03.97 ID:CAP_USER
億光年彼方で発生したガンマ線バーストのスペクトル解析や理論計算から、ガンマ線バーストを引き起こした極超新星に光速の30%以上もの高速成分が付随することなどが明らかになった。極超新星が光速ジェットにより起こる爆発現象であるという理論を支持する成果である。
【2019年1月24日 京都大学/レスター大学/アンダルシア天体物理学研究所】

宇宙で最も高エネルギーの爆発現象であるガンマ線バースト(とくに継続時間が数秒以上のもの)は、太陽が100億年かけて放出するエネルギーを軽々と上回るほどの莫大なエネルギーが数秒~数十秒程度の間に放出される。そのうち一部のガンマ線バーストは、超新星を伴って現れることが知られている。そのような超新星には、高速膨張する超新星放出物質によって作られる性質が見られることから、通常の超新星の10倍以上の爆発エネルギーを持つ「極超新星」と解釈されている。

標準的なモデルでは、ここまで激しい超新星爆発を説明することができない。そのため、非常に高速で回転するなど特殊な条件を満たした星が、一生の最期に中心部でブラックホールか非常に磁場の強い中性子星を形成し、それに伴って光速に近い速度のジェットが形成されるというモデルが提唱されている。

このモデルでは、ジェットのエネルギーの大部分が星全体を吹き飛ばすこと(極超新星の発生)に使われ、一部はほぼ光速に近い速度を保ったまま星を突き抜けてガンマ線を放出すること(ガンマ線バーストの発生)が示されている。この仮説が正しければ、光速に近い速度のガンマ線バーストのジェット成分と光速の10%程度の速度を示す極超新星成分のほかに、光速の数十%程度の速度の「コクーン」(cocoon:繭)が存在すると予測されるが、これまでの極超新星の観測でコクーン成分は確認されていなかった。

■ガンマ線バーストと極超新星の想像図(提供:Anna Serena Esposito)
http://www.astroarts.co.jp/article/assets/2019/01/15529_illustration.jpg

2017年12月5日、コップ座の方向でガンマ線バースト「GRB 171205A」が発生した。地球からの距離は約5億光年と、ガンマ線バーストとしては史上3番目の近さで、このような近傍ガンマ線バーストは10年に1回程度しか発生しない貴重な現象である。

京都大学の前田啓一さん、スペイン・アンダルシア天体物理学研究所のLuca Izzoさんたちの研究グループは、口径10mのスペイン・カナリア大望遠鏡と口径8mのチリ・VLT望遠鏡を用いて、可視光線波長におけるGRB 171205Aの詳細な追観測を即座に開始した。すると、ジェットとは異なる、主に可視光線で光る成分が爆発直後から存在することが確認された。

さらに、ガンマ線バースト発生の1日後には、極超新星で見られるような幅の広い吸収線が現れ始め、超新星「SN 2017iuk」と名づけられた。これまでガンマ線バーストに付随する超新星由来の成分が発見されたのは、最も早い例でも爆発の5日後であったことから、今回の観測は非常に重要な機会となる。

■コップ座の渦巻銀河に発生したGRB 171205A・SN 2017iuk(提供:カナリア大望遠鏡)
http://www.astroarts.co.jp/article/assets/2019/01/15530_sn2017iuk.jpg

アストロアーツ
http://www.astroarts.co.jp/article/hl/a/10433_sn2017iuk

続きはソースで

(提供:Izzo et al. (2019) Nature、京都大学) 
ダウンロード


引用元: 【天体物理学】極超新星は光速ジェットにより引き起こされる、ガンマ線バーストのスペクトル解析や理論計算で証明[01/24]

極超新星は光速ジェットにより引き起こされる、ガンマ線バーストのスペクトル解析や理論計算で証明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/29(火) 18:15:24.01 ID:CAP_USER
■土星と環との「共鳴」から自転の周期を計算、最新研究

土星を取り巻く繊細な環。美しいのはもちろんだが、魅力はそれだけではない。信じられないような科学的な事実も打ち明けてくれるのだ。

 このほど天体物理学の学術誌「The Astrophysical Journal」に、環に生じる波を利用して、土星の1日の長さを解明した論文が発表された。論文によると、土星の1日は10時間33分38秒であるという。科学者たちはこれまで、土星の1日の長さがわからないことを何十年も歯がゆく思っていた。

 これは重要な発見だ。「太陽系のどの惑星についても、1日の長さは根本となる特性ですから」と、NASAの土星探査機カッシーニのミッションに参加していた米アイオワ大学の物理学者ビル・カース氏は言う。惑星の1日の長さを知ることは、その重力場や内部構造を解釈するのに役立つ。

「自転の測定が困難な惑星は土星だけです」と言うのは、SETI研究所の上級研究員マシュー・ティスカレーノ氏だ。地球のような岩石惑星なら、表面の特徴を追跡すれば自転速度がわかる。また、木星、天王星、海王星はガス惑星だが、自転軸に対して傾いた磁場を持ち、自転とともにそれがふらつくため、それを利用して自転速度を計算できる。

 対して、土星は非協力的だ。まず、土星はガス惑星なので、追跡できるような表面の特徴はない。また、複数の観測により、土星の磁軸は回転軸とほぼ完全に一致していて、自転による磁場の変化が検出不可能なほど小さいことが確認されている。


土星を取り巻く環はどのようにして形成されたのだろうか? 土星の衛星は何個あるのだろうか? かつてクリスチャン・ホイヘンスやジョヴァンニ・カッシーニも観察した巨大なガス惑星のすばらしい画像の数々を紹介する。(解説は英語です)

■太陽系のドラムセット

 この難問を解く方法はなかなか見つからなかったが、米カリフォルニア大学サンタクルーズ校で天文学と天体物理学を学ぶ大学院生のクリストファー・マ◯コビッチ氏らの研究チームが名案を思いついた。

 氷と塵からできた土星の環は、静かな場所ではない。土星のまわりを回る衛星が近くを通り過ぎるときには、その引力により大小の波が立つ。環の波は、土星の深部にある物質が振動するときも生じる。質量の移動により、土星の重力場に変化が生じれば、環に及ぼす引力も変化するからだ。

 これは、ドラムセットのスネアドラムが、ほかの楽器に共鳴して音を立てる現象に少し似ている。

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/19/012800062/01.jpg

続きはソースで

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/19/012800062/
ダウンロード (2)


引用元: 【天文学】土星の1日の長さが判明、太陽系で唯一謎だった 環との「共鳴」から自転の周期を計算[01/28]

土星の1日の長さが判明、太陽系で唯一謎だった 環との「共鳴」から自転の周期を計算の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/01/11(金) 21:48:22.39 ID:CAP_USER
地球の磁場は40億年ほど前に誕生したと考えられていて、最新の磁場モデルは2015年に発表されました。このモデルは2020年までは持続すると考えられていましたが、急速な磁場の活発化によって、モデル修正が必要な事態になっていることが明らかになりました。

Earth’s magnetic field is acting up and geologists don’t know why
https://www.nature.com/articles/d41586-019-00007-1


「磁場」の存在は、日常生活で強く意識することはありませんが、生活の中で用いられている技術にとっては非常に重要な存在です。たとえば、Googleマップのナビゲーション機能で自分の向いている方向がほぼ正しく表示されるのは、GPS(全地球測位システム)と地磁気センサーを用いて現在地と向いている方向を割り出しているからです。

ところがいま、この磁場の急速な変化が起きているのだそうです。原因の1つと考えられるのが「地球の磁極の移動」です。

磁石に必ずN極とS極が2つ一対で存在するように、巨大な磁石である地球にも2つの磁極があります。北半球にあるのが「北磁極」、南半球にあるのが「南磁極」で、それぞれ極点(北極点・南極点)とは1000kmほど離れています。北極点・南極点があくまで地理学的に定められた地点であるのに対して、北磁極・南磁極は地磁気の変動によって移動することがあります。

続きはソースで

https://i.gzn.jp/img/2019/01/11/magnetic-field-act-up/pole_ss-j.png


https://i.gzn.jp/img/2019/01/11/magnetic-field-act-up/pole_ns-j.png



https://gigazine.net/news/20190111-magnetic-field-act-up/
ダウンロード (8)


引用元: 地球の「磁場」の動きが活発化、原因は研究者にも不明[01/11]

地球の「磁場」の動きが活発化、原因は研究者にも不明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/12/08(土) 16:58:11.10 ID:CAP_USER
【ワシントン共同】
優雅に泳ぐイルカ、木星に現れる―。米航空宇宙局(NASA)は5日までに、無人探査機「ジュノー」が、イルカのように見える木星の雲の模様を捉えた画像を公開した。

 10月末に木星の南半球を上空から撮影した。木星の雲は、大気中に浮かぶアンモニアの氷の粒でできており、粒の大きさや雲の厚さ・・・

続きはソースで

https://cdn.mainichi.jp/vol1/2018/12/06/20181206k0000m040033000p/6.jpg
https://this.kiji.is/443197508447044705?c=39546741839462401
ダウンロード


引用元: 【宇宙】〈画像〉木星に「雲のイルカ」現れ NASA探査機が模様を撮影[12/06]

〈画像〉木星に「雲のイルカ」現れ NASA探査機が模様を撮影の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/12/18(火) 15:10:26.38 ID:CAP_USER
-ブラックホールコロナの加熱メカニズム特定へ-

理化学研究所(理研)数理創造プログラムの井上芳幸上級研究員らの共同研究チーム※は、国立天文台などが国際協力で運用する「アルマ望遠鏡[1]」を用いて、「巨大ブラックホール[2]」周辺に存在する「コロナ[3]」からの電波放射を観測することで、コロナの磁場強度の測定に初めて成功しました。

本研究成果は、これまでの巨大ブラックホール周辺構造の理解に再考を迫るものと考えられます。 銀河中心にある巨大ブラックホール周辺には、太陽と同じように高温プラズマ[4]のコロナが存在します。太陽のコロナは磁場によって加熱されていることから、ブラックホールのコロナの加熱源も磁場だと考えられていました。しかしこれまで、ブラックホール周辺の磁場は観測されておらず、その真相は謎に包まれていました。2014年に共同研究チームは、コロナからの電波放射の存在を予言し、それが観測できれば磁場測定が可能となり、コロナの加熱機構を解明できることを理論的に示していました。

今回共同研究チームは、アルマ望遠鏡を用いて、90~230ギガヘルツ(GHz、1ギガは10億)の電波帯域で二つの活動銀河[5]の中心領域を高感度・高分解能で観測しました。その結果、自らの予言どおり、いずれの巨大ブラックホールからもコロナ由来の電波放射を捉えることに成功しました。

続きはソースで

■図 巨大ブラックホール周辺を取り巻くコロナの想像図
http://www.riken.jp/~/media/riken/pr/press/2018/20181218_1/fig.jpg

理化学研究所
http://www.riken.jp/pr/press/2018/20181218_1/
ダウンロード (4)


引用元: 【宇宙】巨大ブラックホール周辺の磁場を初めて測定 理研[12/18]

巨大ブラックホール周辺の磁場を初めて測定 理研の続きを読む
スポンサーリンク

このページのトップヘ