理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

磁気

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/27(水) 19:51:35.82 ID:CAP_USER
<アメリカだけで1600万人の患者がいるADHD。臨床効果の確認や安全性の確立などの問題は残るが、経頭蓋磁気刺激(TMS)という治療法に期待が高まっている>

イスラエル中部のシャハムで過ごした高校時代は学校が嫌いだったと、メイタル・ゲッタは言う。気が散って授業に身が入らなかった。「努力が足りないと、先生に言われた。私、努力はしてたのに」

23歳でADHD(注意欠陥・多動性障害)と診断された彼女は、中枢神経興奮剤リタリンを処方された。症状は改善したが、服薬には抵抗を感じた。「薬に頼るのは嫌だった」

そこで2015年に、ベングリオン大学の臨床試験に参加した。医師は電磁石の付いた帽子をゲッタの頭にかぶせ、強力なパルスを送って脳の奥に弱い電流を発生させた。経頭蓋磁気刺激(TMS)と呼ばれるこの治療は従来の電気ショック療法と違い、麻酔をかけずに施術する。ゲッタの場合、1回30分、週5回の治療を3週間続けた。

効果はあったと、ゲッタは言う。同様の症例報告は、ほかにもある。だが本格的な臨床試験は終わっておらず、しかるべき学術誌に論文が発表されたわけでもない。医師にとっては悩ましい状況だ。リスクを承知で実験的な治療に手を出すか、臨床試験が終わって当局の認可が下りるまで待つべきか。

アメリカには未成年600万人と成人1000万人のADHD患者がいる。その少なくとも15%は投薬で症状が改善せず、不眠症や不安神経症などの副作用に苦しむ人も多い。

現在、米食品医薬品局(FDA)は鬱病の治療手段としてTMSを認可しているが、ADHDへの適用は認めていない。「私の知る限り、臨床効果を示すデータはない」とノースウェスタン大学のジョエル・ボス准教授(神経学)は言う。現時点でTMSをADHDの治療に使うのは「倫理に反する。費用もとてもかかる」とも。

続きはソースで

https://www.newsweekjapan.jp/stories/assets_c/2019/03/mag190325adhd-thumb-720xauto-155389.jpg

ニューズウィーク日本版
https://www.newsweekjapan.jp/stories/technology/2019/03/adhd-2.php?t=1
images


引用元: 【医学】ADHDに「倫理に反する。費用もかかる」救世主が現れた?経頭蓋磁気刺激(TMS)という治療法[03/25]

ADHDに「倫理に反する。費用もかかる」救世主が現れた?経頭蓋磁気刺激(TMS)という治療法の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/19(火) 14:20:23.64 ID:CAP_USER
地磁気とは地球内部のコアによって発生している磁場のことであり、南極側がN極、北極側がS極となっています。いくつかの動物は地磁気を感知して利用することが知られていましたが、これまでのところ人間が磁場を感知できるのかどうかは明らかになっていませんでした。カリフォルニア工科大学の生物学・生物工学部教授である下條信輔氏らの研究チームは、人間の脳波を観察しながら磁場を変化させる実験を行い、「人間が磁場を感じ取ることができる」という証拠を発見したと発表しました。
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/03_m.jpg

Transduction of the Geomagnetic Field as Evidenced from Alpha-band Activity in the Human Brain | eNeuro
http://www.eneuro.org/content/early/2019/03/18/ENEURO.0483-18.2019

New evidence for a human magnetic sense that lets your brain detect the Earth's magnetic field
https://theconversation.com/new-evidence-for-a-human-magnetic-sense-that-lets-your-brain-detect-the-earths-magnetic-field-113536

Scientists Find Evidence That Your Brain Can Sense Earth's Magnetic Field
https://www.livescience.com/65018-human-brain-senses-magnetic-field.html
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/img-snap09477_m.png

コンパスのN極が北を向くのは地磁気の働きによるものですが、地磁気は地球の表面においてはかなり弱く、せいぜい冷蔵庫に貼り付くマグネットの100分の1程度の磁力しかありません。しかし、地球には磁場を感じ取り、ナビゲーションに役立てている動物も存在します。たとえば渡り鳥やウミガメといった動物は、地球の磁場を利用して方角や場所を判断しています。

その一方で、人間が磁場を感知できるのかどうかという疑問には、長年にわたって答えが出ていませんでした。人間が磁場を感知できるという説に好意的な研究結果もあれば否定的な結果もあり、何十年にもわたって意見の一致を見なかったとのこと。

長らく人間の磁場感知能力について確かな意見が出なかったのは、過去の研究の多くが「日常的な人間の感覚」に頼っていたからだと研究チームは考えています。ほぼ全ての人間は日常生活において磁場を意識することはなく、たとえ磁場が日常生活に影響を及ぼしていたとしても、それは無意識的か非常にかすかなものにとどまります。そこで、生物学者や認知神経学者などを含んだ下條氏らの研究チームは別のアプローチを取り、神経科学的な証拠を発見しようと試みました。
https://i.gzn.jp/img/2019/03/19/human-magnetic-sense-scientists-find/01_m.png

研究チームは成人した34人の被験者に導体で囲まれた特殊なファラデーケージに座って目を閉じてもらい、被験者の脳波を観察しました。ファラデーケージはワイヤーに電流を通すことで制御された磁場を発生させることが可能な造りとなっており、研究チームはケージ内の磁場を自由に操ることができたとのこと。ファラデーケージに特殊な磁場を発生させていない状態では、実験が行われた場所である北緯60度の位置に等しい磁場がケージ内にかかっていたそうです。

通常、人々の日常生活で頭をくるりと回したり、前後の向きを入れ替えたりすると、脳に対して磁場の方向が相対的に変化します。

続きはソースで
ダウンロード (2)


引用元: 【地磁気】「人間は地球の磁場を感じ取ることができる」という証拠を研究者が発見[03/19]

「人間は地球の磁場を感じ取ることができる」という証拠を研究者が発見の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/02/06(水) 21:25:29.08 ID:CAP_USER
 北の磁極はじっとしていたためしがない。地球内部の「外核」を流れる液体の鉄に影響されて、過去100年ほど、北磁極は真北に向けてじりじりと移動してきた。ところが最近になって、専門家は異変が起こっていることに気が付いた。北磁極が急にスピードを上げて移動し始めたのだ。なぜなのかは誰にもわからない。

 その動きがあまりに急激なので、慣例の5年ごとという予定を繰り上げて、米国は世界磁気モデル(WMM)を今年初めに更新する予定にしていた。世界磁気モデルは、携帯電話をはじめ、船舶、航空機などのナビゲーションに利用されている。ところが、米連邦議会の予算案交渉が難航し、予算が切れた連邦政府が一部閉鎖されたため、更新が延期されていた。

 政府が再開し、新しい北磁極を示した最新モデルが2月4日に発表されたが、疑問は残る。北磁極はなぜこれほど速く移動しているのか。更新が遅れたことによる影響はあるのか。最近のグーグルマップの不調と何か関連はあるのだろうか。

■とても敏感な北磁極

 地球上には、北の「極点」が3つ存在する。1つめは地球の自転軸の北端にあたる真北で、いわゆる北極点だ。(参考記事:「北極点がヨーロッパ方向へ急移動と研究発表」)

 2つめは、地球を包み込む磁気圏から考えられる「地磁気北極」だ。地球の中に棒磁石が入っていると想定したときに、磁石の北端と地表が交わる点である。この棒磁石の角度は、地軸と少しだけずれている。そのため地磁気北極はグリーンランドの北西沖に位置し、過去100年間でわずかしか移動していない。

 第3の極点が「北磁極」だ。これは、方位磁石の北をずっと追いかけていくとたどりつく場所である。地球を取り巻く磁力線が真下を向いている場所とも言える(北磁極で方位磁石は逆立ちする)。地磁気北極と違い、北磁極の位置は地下約3000キロより深い外核にある液体の鉄の影響を受けやすい。この流れが磁場を動かし、地上の北磁極が激しく移動する原因となっている。
「北磁極は、とても敏感な場所なんです」と、英リーズ大学の地球物理学者フィル・リバーモア氏は言う。

■世界磁気モデルとは

 北磁極は1831年、ジェームズ・クラーク・ロスによってカナダのヌナブト準州で初めて実際に確認された。以来、北磁極は主に北極点の方向に移動した。その距離は、過去数十年間は数百キロだった(奇妙なことに、同じ時期に南磁極はほとんど移動していない)。

 こうした変化に対応するべく、米海洋大気庁(NOAA)と英地質調査所(BGS)が作成したのが世界磁気モデルだ。BGSの地球物理学者キアラン・ベッガン氏は、「関係組織がすべて同じ地図で運営できるようにするため」と説明している。

 モデルは5年ごとに更新されてきた。最後の定期更新は2015年だった。次の更新までの間、科学者たちは地上の磁気観測所と欧州宇宙機関によるSWARMミッション(地球を1日15~16周する3基の地磁気観測衛星)からのデータを基にモデルの正確さを確認する。今まではそれで十分だった。

 20世紀半ば、北磁極の移動距離は1日30メートル以下だった。1年で11キロに満たない。ところが、1990年代半ばに変化が現れ始めた。2000年代初めには、北磁極は年に約55キロのペースで移動していた。

「高緯度で何かとても奇妙なことが起こっています」と、リバーモア氏。そしてこれが、地球内部の外核で、液体の鉄のジェット噴流が起きていた時期と重なるという。ただし、この2つの出来事の間に関連があるかどうかはわからない。

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/19/020600088/ph_thumb.jpg

続きはソースで

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/19/020600088/
ダウンロード (1)


引用元: 北磁極の動きが加速、原因不明、あまりに急激「世界磁気モデル」を急きょ更新、米国[02/06]

北磁極の動きが加速、原因不明、あまりに急激「世界磁気モデル」を急きょ更新、米国の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/28(金) 11:23:07.70 ID:CAP_USER
■動画
A robot from Hong Kong University rides through a stomach https://youtu.be/MesFVh1Qwos


Worm robot can climb inside you https://youtu.be/T9457Wb8kwA



香港城市大学が作ったこの小さなロボットはまだ生まれたばかりだが、将来あなたの胃腸に送り込まれるかもしれない。

この小さくてワイルドなロボットは、電磁力を利用して泳いだり前後に倒れたりしながら過酷な環境の中を前進して行く。研究者らは体の外からロボットを遠隔操作する。

「ほとんどの動物は足の長さと足の間の距離の比率が2:1から1:1だ。そこでわれわれは比率1:1のロボットを作ることにした」と同大学バイオ医療工学部のDr. Shen Yajingは言う。

足の長さは0.65 mmで先端を尖らせて摩擦を減らしている。ロボットは「ポリジメチルシロキサン(PDMS)と呼ばれるシリコン素材で作られ、埋め込まれた磁気粒子に電磁力を作用されることで遠隔操作が可能になっている」。

続きはソースで

https://techcrunchjp.files.wordpress.com/2018/09/giphy3.gif

https://jp.techcrunch.com/2018/09/27/2018-09-26-watch-this-tiny-robot-crawl-through-a-wet-stomach/
images


引用元: 【機械工学】〈動画〉この小さなロボットは濡れた胃壁を這いまわって薬を届ける[09/27]

〈動画〉この小さなロボットは濡れた胃壁を這いまわって薬を届けるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/03(月) 22:23:44.36 ID:CAP_USER
NTTと産業技術総合研究所は、原子の核磁気共鳴の周波数を微小電気機械システム(MEMS)で制御することに成功した。原子核の回転軸がぶれながらコマのように回る周波数を、機械的にコントロールする。この変化を利用した量子メモリーや量子センサーへの応用を目指す。

 ガリウム・ヒ素の結晶を加工し、両端が固定された板バネ構造のMEMSを作成した。このバネを振動させると固定端にひずみが生じる。

続きはソースで

■板バネMEMSと根元の核磁計共鳴変化のイメージ
https://c01.newswitch.jp/cover?url=http%3A%2F%2Fnewswitch.jp%2Fimg%2Fupload%2FphpPAh2v8_5b8bd18503ad9.jpg

https://newswitch.jp/p/14291
images (1)


引用元: 量子コンピューター進化へ、核スピンをMEMSで制御 NTTと産総研が成功[08/31]

量子コンピューター進化へ、核スピンをMEMSで制御 NTTと産総研が成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/30(木) 15:28:53.36 ID:CAP_USER
近年、夜空にリボン状に伸びる紫色と白色の発光現象が注目されている。この現象は「スティーブ」(STEVE:Strong Thermal Emission Velocity Enhancement)と名づけられ、その発生メカニズムについて科学者の間でも関心が集まっている。これまでスティーブはオーロラの一種ではないかと考えられてきたが、最新の研究からは、オーロラとはまったく別物の未知の現象あることが分かってきた。カナダのカルガリー大学などの研究チームの論文が「Geophysical Research Letters」に掲載された。

スティーブは、オーロラを撮影している写真家グループの間で10年ほど前から知られるようになっていたが、科学者の間でこの現象が注目されだしたのは2016年とつい最近のことである。スティーブの画像をはじめて見た科学者たちは、典型的なオーロラとは少し違うということに気がついたが、その発生メカニズムについてはよくわからなかった。

通常のオーロラは、地球の磁気圏から電子と陽子が電離層に降り注ぐときに発生する。電子と陽子が電離層で励起することによって、緑、赤、青などさまざまな色の発光が起こる。

オーロラとスティーブの違いとして、発生頻度の違いが挙げられる。オーロラは発生条件が揃えば毎晩のように現れるが、スティーブのほうは1年間に数回しか見ることができない。また、高緯度地帯でしか見られないオーロラと違って、スティーブはより赤道に近い地域でも現れることがあるとされる。

スティーブに関する最初の研究論文は、2018年3月に「Science Advances」に発表された。それによると、スティーブの観測中に高速のイオンと電子温度の非常に高いホットエレクトロンの流れが電離層中を通過していることがわかったという。

続きはソースで

【関連記事】
【気象】未知の「紫のオーロラ」、はじめて報告される アマチュアの発見に科学者が注目、慣例にしたがい「スティーブ」と命名


https://news.mynavi.jp/article/20180827-684756/images/001.jpg

マイナビニュース
https://news.mynavi.jp/article/20180827-684756/
ダウンロード (3)


引用元: 謎の発光現象「スティーブ」はオーロラではない未知の事象[08/27]

謎の発光現象「スティーブ」はオーロラではない未知の事象[08/27] の続きを読む
スポンサーリンク

このページのトップヘ