理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

磁石

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/04/11(木) 18:37:13.41 ID:CAP_USER
なぜ最先端の科学の現場で加速器の中にフェレットが入れられていたのか?[04/10]

イリノイ州バタヴィアにあるフェルミ国立加速器研究所(FNAL)は、超伝導磁石を用いた大型の陽子・反陽子衝突型加速器テバトロンを有する施設です。トップクォークの検出に成功したことでも有名な同研究所は、ロバート・ラスバン・ウィルソン初代所長が企画・建設を担当し、1967年から現在に至るまで素粒子物理学などに関する研究を続けています。設立当初、FNALではハイテクトラブルを解決するために非常にローテクな解決策が用いられており、その中心にはなぜか「フェリシア」という名前のフェレットがいたことが明らかになっています。
https://i.gzn.jp/img/2019/04/10/why-ferret-particle-accelerator/00_m.jpg

Why Physicists Tried to Put a Ferret in a Particle Accelerator - Atlas Obscura
https://www.atlasobscura.com/articles/felicia-ferret-particle-accelerator-fermilab

「原子炉の父」ことエンリコ・フェルミにちなんで「フェルミ国立加速器研究所」と名付けられたFNALは、線形加速器(リニアック)、ブースター、リサイクラーリング、メインインジェクターリングから成る加速器を有しています。

リニアックは陽子線とエネルギーを提供するためのもので、ブースターがそれらを加速。リサイクラーリングはより強いビームを得るために陽子をひとまとめにし、メインインジェクターリングはリサイクラーリングにより生成されたビームを閉じ込めて何万回も回転させることで、ビームを光の速度まで加速させます。

FNALの建設風景を収めた写真
https://i.gzn.jp/img/2019/04/10/why-ferret-particle-accelerator/s01.jpg

1971年に戻ると、FNALの加速器の設計は少し異なっていました。現在の加速器と異なるポイントは、メインインジェクターリングおよびリサイクラーリングが存在しなかったという点。当時の加速器では、4マイル(約6.4km)もの長さの「メインリング」と呼ばれるものがこれらの代わりをしていました。このメインリングには内部を通る粒子ビームを導くための「双極子磁石」がなんと774個も搭載されており、さらにその粒子ビームを収束させるための「四重極磁石」が240個搭載されていたとのこと。

これらの磁石はそれぞれ20フィート(約6.1メートル)ほどの長さで、重さはなんと約13トンもあります。これらの磁石が非常に脆弱で、加速器稼働からわずか2日でコイル周りのガラス繊維の絶縁が壊れてしまい2つの磁石が故障。それから数か月で、加速器はなんと350個もの磁石を交換する羽目になったそうです。

それでも1971年6月30日に、なんとか粒子ビームをメインリング周りにまで送ることに成功。しかし、加速器で加速される粒子のエネルギーが70億電子ボルト(eV)を超えたところで、磁石が再びショートしてしまいます。加速器の故障原因について調査したところ、「加速器に使用する真空ダクトの中に金属の細片が残っていたこと」が原因であると判明したそうです。

この故障の原因を取り除くために用いられたのが、フェレットのフェリシアでした。以下の写真は当時の加速器に使用されていた長さ300フィート(約91メートル)の真空ダクトと、その中をゴミ掃除のために走り回ったフェレットのフェリシア。
https://i.gzn.jp/img/2019/04/10/why-ferret-particle-accelerator/s02_m.jpg

続きはソースで

https://gigazine.net/news/20190410-why-ferret-particle-accelerator/ 
ダウンロード (3)


引用元: なぜ最先端の科学の現場で加速器の中にフェレットが入れられていたのか?[04/10]

なぜ最先端の科学の現場で加速器の中にフェレットが入れられていたのか?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2019/03/22(金) 14:54:01.16 ID:CAP_USER
映画「ターミネーター2」に登場するT-1000は液体金属のボディーを持っており、体を自由自在に変形させ、狭い隙間を通り抜けることができます。中国の研究チームがそんなT-1000を思わせるような、水平方向だけでなく垂直方向にも移動可能な液体金属を作り出すことに成功しました。
https://i.gzn.jp/img/2019/03/22/magnetic-liquid-metals-stretches-3d/00_m.jpg

Magnetic Liquid Metals Manipulated in the Three-Dimensional Free Space - ACS Applied Materials & Interfaces (ACS Publications)
https://pubs.acs.org/doi/abs/10.1021/acsami.8b22699

'Terminator'-like liquid metal moves and stretches in 3D space (video) | EurekAlert! Science News
https://www.eurekalert.org/pub_releases/2019-03/acs-lm032019.php

新たに開発された液体金属がどのようなものになっているのかは、以下のムービーを見るとよくわかります。

‘Terminator’-like liquid metal moves and stretches - Headline Science
https://youtu.be/jFNpfD1sg6g



現在のところ、T-1000のように自由自在に形を変えることができるロボットは開発されていませんが……
https://i.gzn.jp/img/2019/03/22/magnetic-liquid-metals-stretches-3d/img-snap09533_m.jpg

ガリウムやある種の合金は常温で液体となり、高い伝導性や変形性を持っています。
https://i.gzn.jp/img/2019/03/22/magnetic-liquid-metals-stretches-3d/img-snap09534_m.jpg

これらの液体金属にニッケルや鉄といった磁性粒子を加えることで、研究者は磁石で動かすことができる液体金属を製造することが可能。しかし、ほとんどの磁性液体金属は高い表面張力を持っているため、水平方向にしか移動することができず、水中でしか操作することができません。中国の研究チームはこの問題を解決し、水平方向だけでなく垂直方向にも移動し、空気中でも形を保つことができる液体金属の開発を行いました。
https://i.gzn.jp/img/2019/03/22/magnetic-liquid-metals-stretches-3d/img-snap09535_m.jpg

続きはソースで

https://gigazine.net/news/20190322-magnetic-liquid-metals-stretches-3d/
images (1)


引用元: 【液体金属】「ターミネーター2」のT-1000のように水平方向だけでなく垂直方向にも動く液体金属の開発に成功[03/22]

【液体金属】「ターミネーター2」のT-1000のように水平方向だけでなく垂直方向にも動く液体金属の開発に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/12/18(火) 15:37:51.84 ID:CAP_USER
■動画
Magnetic Pogo Stick? https://youtu.be/9261h0LKIJY



強力なネオジム磁石などを販売しているK&J Magnetics, Incのチームは、ユーザーから「磁石の反発力を利用してバネの替わりにすることができるのか?」という問い合わせを受けていたとのこと。そこで開発チームは、実際にホッピングのバネを分析して「ホッピングのバネを磁石に置き換えることはできるのか?」という実験を行いました。

Magnetic Pogo Stick
https://www.kjmagnetics.com/blog.asp?p=pogo-stick-spring
https://i.gzn.jp/img/2018/12/18/magnetic-pogo-stick/img-snap07886_m.jpg

チームは古いホッピングを使ってさまざまな検証を行ったそうで、その様子をまとめたムービーがYouTubeで公開されています。
1本足でピョンピョンとジャンプするホッピングには、衝撃を吸収してジャンプするためのバネが付いています。検証チームはホッピングに物差しを取り付け、体重150ポンド(約68kg)の成人男性がホッピングを使用した時にどれほどバネが圧縮されるのかを測ったとのこと。まずは成人男性が全体重をホッピングに預けたところ、バネはおよそ2インチ(約5cm)ほど縮みました。

残念ながら、「実物大のホッピングのバネを磁石に置き換えようとした場合、かなり強力な磁石を大量に使用しなければならず危険」という判断のもと、今回は8分の1スケールのミニチュアホッピングを使用することにしました。

バネを磁石に置き換えられるかどうかを調べるために、まずは「バネにかかる力はバネの伸びる距離または縮む距離に比例する」というフックの法則を理解する必要があります。今回検証チームが使用したバネの「ばね定数」は1インチ(約2.5cm)あたり8ポンド(約3.6kg)。つまり、バネを2インチ縮めた時にバネへかけられた力は2×8=16ポンド(約7.2kg)となり、バネを0.5インチ(約1.3cm)縮めた時にかかった力は0.5×8=4ポンド(約1.8kg)となります。
https://i.gzn.jp/img/2018/12/18/magnetic-pogo-stick/02_m.png

また、ホッピングの場合は最初の段階でバネが少し縮んでいます。それを再現するため、検証チームはもともと約2.9インチ(約7.4cm)のバネを長さ2.4インチ(約6cm)に縮めた状態で、ミニチュアホッピングにセットしたとのこと。

これによりホッピング自体に力が加えられる前から、バネにはある程度の力が加えられた状態になります。グラフにするとこんな感じ。
https://i.gzn.jp/img/2018/12/18/magnetic-pogo-stick/04_m.png

ミニチュアホッピングのバネを磁石に置き換えられるのかどうかを調べるため、チームはRC44という直径0.75インチ(約1.9cm)のリング状ネオジム磁石2個を、磁石同士が反発するようにしてミニチュアホッピングにセットしました。
その結果、ミニチュアホッピングが縮んだ距離と加えた力の関係をグラフに表したのがコレ。赤い線がバネ、青い線が磁石を表しています。磁石はホッピングを押し込んでもほとんど抵抗せず、およそ1.5インチ(約3.8cm)ほど押し込んでからようやく強く反発し始めました。バネは加えた力と縮んだ距離が直線的なグラフを描くのに対し、磁石では非常に急なカーブを描いています。
https://i.gzn.jp/img/2018/12/18/magnetic-pogo-stick/06_m.png

続きはソースで

https://i.gzn.jp/img/2018/12/18/magnetic-pogo-stick/14_m.png

GIGAZINE
https://gigazine.net/news/20181218-magnetic-pogo-stick/
ダウンロード


引用元: 【力学/物理学】〈フックの法則〉「ホッピングのバネ」を磁石の反発力に置き換えることは可能なのか?を検証[12/18]

〈フックの法則〉「ホッピングのバネ」を磁石の反発力に置き換えることは可能なのか?を検証の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/24(月) 12:16:22.03 ID:CAP_USER
 電気通信大学の田島裕康特別研究員らは量子力学の性質を使う非常に小さな対象を操作する際の精度に限界があることを突き止めた。操作の精度を一定以上に高めようとすると、操作を行う装置のエネルギーのばらつきが大きくなることを導いた。次世代の高速計算機と期待される量子コンピューターなどで使う量子デバイスの設計に応用できるという。

 従来のコンピューターが0か1のビットを基本単位として計算するのに対し、量子コンピューターは0でも1でもある「重ね合わせ」の状態が存在する量子力学の性質を利用している。これを実現するには、レーザー発振器で光を打ち込んで超電導回路を操作したり、磁力を使って、量子力学で使われる磁石の性質(スピン)を変化させたりすることが必要だ。

続きはソースで

日本経済新聞
https://www.nikkei.com/article/DGXMZO35610010R20C18A9X90000/
ダウンロード (2)


引用元: 【量子力学】量子力学「操作」に限界 電通大発見、計算機に応用も[09/21]

量子力学「操作」に限界 電通大発見、計算機に応用もの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/22(水) 15:59:45.68 ID:CAP_USER
■動画
Want to Keep Sharks Away? Try Magnets | Nat Geo Wild https://youtu.be/QXXNEizRre4


「サメに磁石」が、漁業におけるサメ保護の決め手になるかもしれない。

 新たな研究によると、磁石にはサメやエイを遠ざける効果があり、漁業用の餌を入れたカゴにこうした魚が間違ってかかってしまうのを防げるようになるという。

「あまりにうまく行ったので驚きました」と言うのは、オーストラリア、ニューカッスル大学の海洋生態学者で、学術誌「Fisheries Reseach」に論文を発表したビンセント・ラウール氏だ。

 サメの頭部の前方には、獲物の筋肉の収縮によって生じる微弱な電流を感知する器官がある。

「サメは基本的に、餌が見えなくても、匂いがしなくても、そのありかを感知できます」とラウール氏は言う。

 強力で不自然な磁場、つまり磁石は、サメのこの感覚を混乱させる。ラウール氏はこれを「ドアをあけた途端に強烈な悪臭に見舞われるようなもの」だと言う。
「私たちが知るかぎり、動物にとっては非常に不快な刺激です」

 サメが近づかないようにできるかどうかを検証するため、研究チームは、餌を詰めた漁業用のカゴの入り口付近に、長さ約8cmの棒磁石を取り付けた。
冷蔵庫に貼る磁石とたいして変わらない長さだが、厚みがあり、ずっと強力な磁石だ。

 シドニーの北にあるホークスベリー川河口の商業漁船は、こうしたカゴを使ってゴウシュウマダイやオーストラリアキチヌを獲っている。
だが、カゴに入っている餌は、シロボシホソメテンジクザメやポートジャクソンネコザメ、アラフラオオセ(これもサメ)のほか、ときにシビレエイも引き寄せてしまう。
ラウール氏によると、この漁では、望まないサメとエイが全漁獲量の10%を超えるという。
 サメはふつう、カゴに入っても死なないが、ストレスを受けて消耗してしまうため、漁師が海に放してもすぐに大型のサメやその他の魚の餌食になってしまう。サメは漁の損益にも影響する。
サメがカゴに入らなければ、その分、ゴウシュウマダイが入れるからだ。

続きはソースで

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/18/082000364/
ダウンロード (1)


引用元: 【海洋生物学】〈動画〉サメよけに磁石が威力を発揮、保護に朗報「あまりにうまく行ったので驚きました」と研究者

〈動画〉サメよけに磁石が威力を発揮、保護に朗報「あまりにうまく行ったので驚きました」と研究者の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/05/22(火) 04:57:30.65 ID:CAP_USER
磁石の性質がある曲がった金属に、電気を流すだけで温度が上がったり下がったりする現象を世界で初めて観測したと、日本の物質・材料研究機構などのグループが発表し、コンピューターの新しい冷却技術などにつながる可能性があると注目されています。

茨城県つくば市にある物質・材料研究機構のグループは、わずかな温度変化も測れる最先端の装置を使って、磁石の性質がある、カタカナのコの字型に曲げられた「ニッケル」という金属に、電気を流して温度の変化を測定しました。

その結果、金属の曲がっている部分で、温度がわずかに上がったり、下がったりして、電流が増えるほどその度合いが増す現象を世界で初めて観測しました。

続きはソースで

NHKニュース
https://www3.nhk.or.jp/news/html/20180522/k10011447391000.html
images (1)


引用元: 【物理】50年以上前予測の現象 世界初観測 曲がった金属に電気流すと…[05/22]

50年以上前予測の現象 世界初観測 曲がった金属に電気流すと…の続きを読む
スポンサーリンク

このページのトップヘ