理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

素数

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/06(土) 23:45:35.06 ID:CAP_USER
「今世紀最大の難問の一つ」とされ、約160年にわたって解かれていない数学の難問「リーマン予想」を、英国の数学者が「証明した」と発表し、数学ファンの中で「ビッグニュース」「本当か?」と話題になっている。

■リーマン予想とは

 ドイツの数学者リーマンが1859年に発表した数学の未解決問題。2、3、5、7……と無限に続く素数が、どのように分布しているか、という素数分布の謎の解明につながるとされる。「数の原子」とも呼ばれる素数の本質に迫れるため、今世紀最大の難問の一つに挙げられる。

■「おまけで解けた」

 発表したのは、英エディンバラ大名誉教授のマイケル・アティヤ氏(89)。「数学のノーベル賞」と言われるフィールズ賞やアーベル賞を受賞し、英王立協会会長も務めたことのある、世界で最も有名な数学者の一人だ。

 アティヤ氏の発表内容については9月20日、4日後にドイツで開かれる数学フォーラムでの講演に先立ち、主催者側がツイッターで「彼はリーマン予想の証明を発表するか? その通り、講演概要にそう書いてある」と予告。SNS上では「マジ? アティヤなら解きかねん」「ほんまかいな」と講演前から騒がれていた。

 講演でアティヤ氏は、ある物理定数を数学的に導出する過程で、リーマン予想を背理法を使って証明できると主張。「リーマン予想(の証明)はおまけ」とも語った。講演はユーチューブで生配信され、世界中で視聴された。講演が終わると会場からは拍手がわき起こった。5ページからなる証明論文も公開された。

 今回公表された論文以外に、全ての根拠を示した論文を、英王立協会が発行する科学誌に投稿したという。論文は公開されていない。証明が認められるのは、論文が複数の専門家による厳密な検証を受けてからになる。

続きはソースで

【関連記事】
【数学】人類史上最大の難問の一つ 「リーマン予想」 ついに解明か / 名乗り出たのはフィールズ賞受賞数学者マイケル・アティヤ氏

https://www.asahicom.jp/articles/images/AS20181005003697_commL.jpg

朝日新聞デジタル
https://www.asahi.com/articles/ASL9T42NNL9TULBJ004.html
ダウンロード (4)


引用元: 【数学】〈続報〉超難問「リーマン予想」証明? 英数学者マイケル・アティヤ氏に懐疑的な声も[10/06]

【数学】〈続報〉超難問「リーマン予想」証明? 英数学者マイケル・アティヤ氏に懐疑的な声もの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/04/23(月) 11:52:37.11 ID:CAP_USER
小坪遊2018年4月23日11時23分

(写真)
米バージニア州で大量発生した素数ゼミ=2016年5月、小林哲撮影

 米国で13年か17年ごとに大量発生する「素数ゼミ」が、周期の異なる種間で交配していたことを、京都大などの研究チームが遺伝子解析で突き止めた。
素数である13と17の年周期をもつ種が出会うのは、最小公倍数の221年に1度しかないが、交配の痕跡が残されていた。周期の謎に迫る手がかりになるという。

 英科学誌ネイチャーの関連誌に発表した。素数ゼミは、米東部などで大量発生する7種がいる。13年と17年のいずれかの周期で発生を繰り返すが、地域によって発生のタイミングが異なり、ほぼ毎年米国内で大量発生が起きている。集団間の競合を避けるために、出会うタイミングが少ない素数周期で進化したとする説があるが、詳しい理由は解明されていない。

続きはソースで

 論文の概要はサイトhttps://www.nature.com/articles/s42003-018-0025-7別ウインドウで開きますで見ることができる。(小坪遊)


(画像)
221年に1度の出会い

https://www.asahi.com/amp/articles/ASL4N51TRL4NULBJ00Z.html
ダウンロード


引用元: 【生態】素数ゼミ、221年に1度の交配確認 大発生の謎に迫る[04/23]

素数ゼミ、221年に1度の交配確認 大発生の謎に迫るの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/01/05(金) 11:54:02.65 ID:CAP_USER
新たなメルセンヌ素数を探している「グレート・インターネット・メルセンヌ数検索(GIMPS)」が、既知の素数として最大のものとなる50番目のメルセンヌ素数を見つけました。新たな素数は「2 77,232,917-1」で、「M77232917」と呼ばれています。

50th Known Mersenne Prime Discovered
https://www.mersenne.org/primes/press/M77232917.html

関連画像
https://i.gzn.jp/img/2018/01/05/largest-known-prime-number/01.png


メルセンヌ素数とは、「2のべき乗より1小さい自然数」であるメルセンヌ数の中でも素数のものを指します。

GIMPSによると50番目のメルセンヌ素数「M77232917」は2324万9425桁の数字で、これまで最長だった49番目のメルセンヌ素数「M74207281」の2233万8618桁と比べて、約100万桁大きくなっています。

以下のZIPファイルには、「M77232917」の書かれたテキストファイルが入っています。
ZIPファイルのサイズは11MBほどですが、テキストファイルは22.6MBあります。

http://www.mersenne.org/primes/digits/M77232917.zip
関連画像
https://i.gzn.jp/img/2018/01/05/largest-known-prime-number/02.png

続きはソースで

GIGAZINE
https://gigazine.net/news/20180105-largest-known-prime-number/
ダウンロード (1)


引用元: 【数学】〈テキストファイルで22.6MB〉「史上最大の素数」約2年ぶりに更新、50番目のメルセンヌ素数で桁数は2324万9425桁

【数学】〈テキストファイルで22.6MB〉「史上最大の素数」約2年ぶりに更新、50番目のメルセンヌ素数で桁数は2324万9425桁の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/06/06(火) 01:22:19.98 ID:CAP_USER
313991399371199131139799331911377147529895941991587879456361416793343797754289852575517133312684269943695978946644516863648961536981354977375935673418795287369494189373478623641239162919379269294319941871985794933399739235523691657154837889117834232678974449658279117129522895488222612449716435651112797868118722475112367318718359954332756851152845673554343833423958324129279242571543956244312159149656971499164148747227159798119915531789396889314926554998567389189177184378411356887579966732519395769634484946484155736859195773976485587598811713196922772648319742413259665798111566314845954551344321292792178583218155711143611735499324729469232679643212644511755544726594454683193623626957711324895114496128478896375157597659974246467315936911531792288239249136494329788845728831611728857639343337449493221561738959339141347119138332653219119612984163669317356624631952956188127648784846583361813646131913157456632928169513747231224138425962243343371145487745954412587484837933238642278851955148574512595199969685612245439118737626399742196143742577819117917319979999777371311371999793393313991399371199131139799331911377147529895941991587879456361416793343797754289852575517133312684269943695978946644516863648961536981354977375935673418795287369494189373478623641239162919379269294319941871985794933399739235523691657154837889117834232678974449658279117129522895488222612449716435651112797868118722475112367318718359954332756851152845673554343833423958324129279242571543956244312159149656971499164148747227159798119915531789396889314926554998567389189177184378411356887579966732519395769634484946484155736859195773976485587598811713196922772648319742413259665798111566314845954551344321292792178583218155711143611735499324729469232679643212644511755544726594454683193623626957711324895114496128478896375157597659974246467315936911531792288239249136494329788845728831611728857639343337449493221561738959339141347119138332653219119612984163669317356624631952956188127648784846583361813646131913157456632928169513747231224138425962243343371145487745954412587484837933238642278851955148574512595199969685612245439118737626399742196143742577819117917319979999777371311371999793393

これは何の変哲もない只の1089桁の素数に見えたかもしれない。

本当にそうだろうか?

1089=33×331089=33×33なので、この素数を33桁毎に改行して33×33の正方形の形に書いてみよう。

313991399371199131139799331911377
147529895941991587879456361416793
343797754289852575517133312684269
943695978946644516863648961536981
354977375935673418795287369494189
373478623641239162919379269294319
941871985794933399739235523691657
154837889117834232678974449658279
117129522895488222612449716435651
112797868118722475112367318718359
954332756851152845673554343833423
958324129279242571543956244312159
149656971499164148747227159798119
915531789396889314926554998567389
189177184378411356887579966732519
395769634484946484155736859195773
976485587598811713196922772648319
742413259665798111566314845954551
344321292792178583218155711143611
735499324729469232679643212644511
755544726594454683193623626957711
324895114496128478896375157597659
974246467315936911531792288239249
136494329788845728831611728857639
343337449493221561738959339141347
119138332653219119612984163669317
356624631952956188127648784846583
361813646131913157456632928169513
747231224138425962243343371145487
745954412587484837933238642278851
955148574512595199969685612245439

118737626399742196143742577819117 
917319979999777371311371999793393
313991399371199131139799331911377
147529895941991587879456361416793
343797754289852575517133312684269
943695978946644516863648961536981
354977375935673418795287369494189
373478623641239162919379269294319
941871985794933399739235523691657
154837889117834232678974449658279
117129522895488222612449716435651
112797868118722475112367318718359
954332756851152845673554343833423
958324129279242571543956244312159
149656971499164148747227159798119
915531789396889314926554998567389
189177184378411356887579966732519
395769634484946484155736859195773
976485587598811713196922772648319
742413259665798111566314845954551
344321292792178583218155711143611
735499324729469232679643212644511
755544726594454683193623626957711
324895114496128478896375157597659
974246467315936911531792288239249
136494329788845728831611728857639
343337449493221561738959339141347
119138332653219119612984163669317
356624631952956188127648784846583
361813646131913157456632928169513
747231224138425962243343371145487
745954412587484837933238642278851
955148574512595199969685612245439
118737626399742196143742577819117
917319979999777371311371999793393

この見事な正方形を眺めていると、33桁の数が33個並んでいるように思えてくる。

もう、お気づきだろうか?

そう、313991399371199131139799331911377
から 917319979999777371311371999793393
までの33個の数は全て素数なのである。

更に、これら33個の数をそれぞれひっくり返してみてほしい。

こうして得られる33個の数も全て素数だ。

つまり、先ほどの33個の数は全てエマープだったのだ。

続きはソースで

images


引用元: 【数学】やたらすごい素数がみつかる©2ch.net

【数学】やたらすごい素数がみつかるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/04/03(月) 16:15:34.47 ID:CAP_USER9
苦手な子どもが多い分数の計算。それを視覚的に理解しようと、浜松市内の小学生=当時=が「分数ものさし」を考えた。
長さ12センチのものさしに5列の目盛りが付き、基準単位の「12分の1」がいくつあるか数えて計算する――。
この発想に静岡大が注目し、教材化に向けた研究も進む。

浜松市立神久呂小学校を今春卒業した山本賢一朗君。小5の時、分数に苦手意識を感じたという。友人も悩んでいた。
掛けるのになぜ、答えは小さくなるのか。割り算ではなぜ、割る方の分母と分子を入れ替えて逆数にするのか……。

続きはソースで

分数ものさしでの割り算の計算方法
https://lpt.c.yimg.jp/amd/20170403-00000009-asahi-000-view.jpg

配信 4/3(月) 7:01配信

朝日新聞デジタル
https://headlines.yahoo.co.jp/hl?a=20170403-00000009-asahi-soci

ダウンロード


引用元: 【発明】「分数ものさし」小学生が発案 計算法、目盛りで理解-静岡大、教材化に向け研究★2 [無断転載禁止]©2ch.net

【発明】「分数ものさし」小学生が発案 計算法、目盛りで理解-静岡大、教材化に向け研究の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2016/12/05(月) 09:47:07.25 ID:CAP_USER
巨大な素数が新たに発見された。
新たな素数は「10223×2^31172165+1」という数で、桁数は930万桁ある。

すべての自然数nについて、k×2^n+1が素数にならないような正の奇数kが無限に存在することが分かっている(1960年にシェルピンスキーが証明)。
このような奇数kはシェルピンスキー数と呼ばれる。これまでに知られている最小のシェルピンスキー数は「78557」であるが、これより小さいシェルピンスキー数が存在するかどうかはまだ確認されていない。

「78557」よりも小さいシェルピンスキー数の候補として「10223」「21181」「22699」「24737」「55459」「67607」の6個が挙がっていたが、今回「10223×2^31172165+1」が素数であることが分かったため、10223はシェルピンスキー数ではないことが確認された。

なお、これまでに見つかっている最大の素数は「M74207281」というメルセンヌ数で、今年1月に報告された。
メルセンヌ数とは、2のn乗-1の形で表される素数。M74207281=2^74207281-1 は、2233万8618桁の長さをもつ。

http://www.dailymail.co.uk/sciencetech/article-3984110/Researchers-reveal-new-prime-number-help-solve-50-year-old-maths-puzzle-s-9-3-MILLION-digits-long.html
images


引用元: 【数学】新たな巨大素数が見つかり、シェルピンスキー数の候補が1つ消える ©2ch.net

【数学】新たな巨大素数が見つかり、シェルピンスキー数の候補が1つ消えるの続きを読む
スポンサーリンク

このページのトップヘ