理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

細胞

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/26(木) 19:56:06.53 ID:CAP_USER
「不老不死」。歴史上、中国・秦の始皇帝が追い求め、多くの独裁者にとっての永遠の願いだった。今も世界中の研究者が不老不死の「源」を探し続けている。不老不死のメカニズムを解明しようとしているクラゲ研究者がいると聞いて、私(24)は和歌山県白浜町を訪ねた。

不老不死といわれるベニクラゲの標本。ベニクラゲ再生生物学体験研究所はゲノム解析によるメカニズムの解明を進めている(和歌山県白浜町)=小園雅之撮影

不老不死といわれるベニクラゲの標本。ベニクラゲ再生生物学体験研究所はゲノム解析によるメカニズムの解明を進めている(和歌山県白浜町)=小園雅之撮影

 元京都大准教授の久保田信さん(65)は7月16日に、白浜町内に「ベニクラゲ再生生物学体験研究所」を開設したばかり。水槽にはふわふわ動く、ピンク色の小さなクラゲ。私がかわいいなぁと見入っていると「これが若返るベニクラゲです」と久保田さん。わずか数ミリ、最大でも1センチほどの小さな体にどんな可能性が秘められているのか。

■生まれ変わるベニクラゲ

 クラゲは通常、植物のような形状のポリプから水中を浮遊する形に成長し、死ぬと溶ける。しかし、ベニクラゲは命の危機に陥ると団子状になり、細胞が変化。新たにポリプを伸ばし、若い体に生まれ変わる。「チョウがイモムシに若返るようなもの」(久保田さん)

 ベニクラゲを針で突き刺しダメージを与えると、数日でポリプに若返る。その後、順調なら約2カ月で元のクラゲの姿に戻る。久保田さんはこうした若返りに1個体で14回成功し、海外からも注目された。海水の塩分濃度の変化による若返りを偶然成功させたこともあるという。

 ベニクラゲがなぜ若返るのか、肝心のメカニズムはまだ解明されていない。ヤワラクラゲやミズクラゲでも若返りに成功したケースがあり「ほかにもベニクラゲよりも若返るクラゲがいるかもしれない」(久保田さん)。

 久保田さんは1992年から白浜町にある京大の実験所で海洋生物の研究を続けてきた。米紙ニューヨーク・タイムズに載った記事をきっかけにイタリア人監督がドキュメンタリー作品を製作。作品は2016年のベネチア国際映画祭でも上映された。

 18年3月に京大を定年退職したが、研究所を立ち上げてライフワークとしてクラゲ研究に打ち込む。「クラゲも人間も遺伝子構造はあまり変わらない。遺伝子分析などが進めば、人類の夢である不老不死のメカニズムのヒントが見つかるかもしれない」

 その遺伝子分析を担うのがかずさDNA研究所(千葉県木更津市)主任研究員の長谷川嘉則さん(47)。16年に発表した研究結果ではベニクラゲの遺伝子の約4分の1が未知の物と判明した。長谷川さんは「若返りの秘密が隠されたオリジナル遺伝子が存在する可能性がある」と話す。

 現在、ベニクラゲなど不老不死生物に人間の寿命延長のカギがあるとみて国際的に激しい研究競争が繰り広げられている。IT(情報技術)企業のグーグルも老化の原因を突き止めるためカリコという会社を設立し、ハダカデバネズミなどを研究している。

 ハダカデバネズミはアフリカに生息し、寿命は約30年と他のマウスやラットと比べて非常に長い。がんになりにくい特性もあり、人間のがん予防や老化防止に役立つのではないかと期待されている。国内でも熊本大がハダカデバネズミの皮膚の細胞からiPS細胞を作製、がん化しにくい仕組みの一端を解明した。

■脳のデジタル移植も

 その一方で、人間を寿命のある肉体そのものから解放する動きも活発化している。脳のデータを丸ごとデジタル空間に移植することができれば、人間の意識はデジタル空間で生き続け「永遠の命」が実現するという考えで、トランスヒューマニズム(超人間主義)といわれる。

 続きはソースで

https://www.nikkei.com/content/pic/20180726/96958A9F889DE1E1E1EBE5E7E4E2E0E7E2E5E0E2E3EA9BE2E2E2E2E2-DSXMZO3339754025072018TCP001-PN1-2.jpg

日本経済新聞
https://www.nikkei.com/article/DGXMZO33397560V20C18A7I00000/
images


引用元: 【生物】若返りクラゲ研究 不死の夢、脳のデジタル移植も[07/26]

若返りクラゲ研究 不死の夢、脳のデジタル移植もの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/27(金) 14:34:54.25 ID:CAP_USER
年を取るとともにどうしても体は衰えてしまうもので、特に顔や体にしわが増え、髪の毛を中心に体毛が少しずつ減っていくなど、老化現象は目に見えて表れます。「いかにして老化を抑えるか」は古来より人類が抱えたテーマでもありますが、遺伝子を編集することでこうした老化現象を解消できるかもしれないという研究結果が報告されています。

Gene Editing Can Reverse Aging Signs in Mice. Maybe Humans Next? | Digital Trends
https://www.digitaltrends.com/cool-tech/reversing-wrinkling-balding-mice/

Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function | Cell Death & Disease
https://www.nature.com/articles/s41419-018-0765-9

アラバマ大学バーミンガム校の研究チームは、遺伝子編集を利用して老化を人為的に打ち消すことができないかという研究を進めました。
その中で研究チームが注目したのが、ミトコンドリアの機能性と老化プロセスの関係です。

ミトコンドリアは細胞内小器官の1つで、細胞内のエネルギーを産生する役割を担っています。
好気性バクテリアの1種が真核細胞内に共生したのがはじまりといわれているミトコンドリアは、細胞とは別に独自のミトコンドリアDNA(mtDNA)を含んでいます。

加齢による老化現象の一因として、mtDNAの変異が以前から指摘されていました。
単一の環状構造を持つmtDNAは二重らせん構造の核DNAよりも損傷しやすく、少しずつ損傷したmtDNAが増えていくことで、細胞・器官の機能低下を引き起こして老化につながるのではないかという説です。
しかし、mtDNAの損傷が具体的にどうやって老化現象を引き起こすのかははっきりとわかっていませんでした。

研究チームは、POLG1という遺伝子の一部を変異させて、さまざまな組織でmtDNAの枯渇が誘導されるマウスを作製しました。

続きはソースで

https://i.gzn.jp/img/2018/07/27/reversing-wrinkling-balding-mice/a02_m.jpg
https://i.gzn.jp/img/2018/07/27/reversing-wrinkling-balding-mice/a03_m.jpg
https://i.gzn.jp/img/2018/07/27/reversing-wrinkling-balding-mice/a01.jpg

GIGAZINE
https://gigazine.net/news/20180727-reversing-wrinkling-balding-mice/
ダウンロード (2)


引用元: 【ゲノム編集】遺伝子編集によってしわや抜け毛を解消し老化を止めることができるかもしれない[07/27]

遺伝子編集によってしわや抜け毛を解消し老化を止めることができるかもしれないの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/27(水) 14:46:30.15 ID:CAP_USER
ぜんそくで気管などの組織が固くなり、重症化につながる「線維化」の仕組みを解明したと千葉大学の研究グループが発表しました。
重症患者の治療に道を開く可能性があるとしています。

ぜんそくは、慢性化して気管などの組織が固くなる「線維化」が進むと、炎症を抑える薬が効きにくくなり重症化につながることから、千葉大学大学院の中山俊憲教授などの研究グループは、新たな治療法の開発に向けヒトのぜんそくをモデル化したマウスで線維化の仕組みを調べました。

その結果、ぜんそくのマウスの免疫細胞の中には、ダニなど、アレルギーの原因と結びつくと、特定のたんぱく質を分泌するものがあり、「好酸球」という白血球が・・・

続きはソースで

https://www3.nhk.or.jp/news/html/20180627/K10011496931_1806270029_1806270536_01_02.jpg

NHKニュース
https://www3.nhk.or.jp/news/html/20180627/k10011496931000.html
images


引用元: 【医学】ぜんそく 重症化につながる「線維化」の仕組み解明 千葉大[06/27]

ぜんそく 重症化につながる「線維化」の仕組み解明 千葉大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/27(水) 12:32:06.98 ID:CAP_USER
眠気の正体は神経細胞の80種のたんぱく質群の変化であることを、筑波大などのグループがマウスの実験で突き止めた。
このたんぱく質群は起きている間は「リン酸化」と呼ばれる現象が進み、眠ると元に戻る。
この現象が神経細胞の疲弊と回復に関わっているらしい。論文は英科学誌ネイチャー電子版に掲載された。

 これまでも不眠状態にしたマウスの脳内物質の変化を調べる実験はあった。

続きはソースで

https://www.asahicom.jp/articles/images/AS20180627001428_comm.jpg

朝日新聞デジタル
https://www.asahi.com/articles/ASL6N42CTL6NUJHB005.html


ダウンロード (4)

引用元: 【医学】「眠気の正体」ついに判明 神経細胞のたんぱく質が変化[06/27]

「眠気の正体」ついに判明 神経細胞のたんぱく質が変化の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/07/07(土) 12:36:23.68 ID:CAP_USER
将来がんになる細胞(前がん細胞)が、周囲の正常な細胞を押しのけて「領地」を拡大させていく仕組みを、大阪大などの研究チームが解明した。この仕組みを妨げることができれば、将来的に、がんを早い段階で治療できる可能性があるという。

 前がん細胞は、正常な細胞より速く分裂し、その結果がんをつくる。
だが、細胞同士は満員電車のようにぎゅうぎゅう状態で隣り合っているため、好き勝手に領地を広げられない。
前がん細胞がどうやって領地を広げるのかは分かっていなかった。

続きはソースで

https://www.cell.com/current-biology/fulltext/S0960-9822(18)30631-6
別ウインドウで開きますで読める。

https://www.asahicom.jp/articles/images/AS20180703004463_comm.jpg

朝日新聞デジタル
https://www.asahi.com/articles/ASL6G6CTHL6GPLBJ00M.html
ダウンロード


引用元: 【医学】がん「領地」拡大の仕組み解明 正常細胞死なせ割り込む[07/04]

がん「領地」拡大の仕組み解明 正常細胞死なせ割り込むの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/06/18(月) 09:21:49.84 ID:CAP_USER
 山梨大学の小泉修一教授らの研究グループは、うつ病治療薬が、神経細胞以外の新しい標的細胞「アストロサイト」に作用して治療効果を発揮することを発見した。
研究には慶應義塾大学、岡山大学が協力した。

 これまで、うつ病治療薬として頻用されている「選択的セロトニン再取り込み阻害薬(SSRI)」は、神経細胞に作用してその治療効果を発揮すると当たり前のように信じられてきた。
しかし、治療効果が出るまでに時間がかかったり、効果が不十分であったり、副作用で悩まされるなど、うつ病治療薬の働きには不明点が多かった。うつ病の回復と関係する事象を正確に理解し、新たな治療戦略・治療法を確立する必要があった。

 脳内には神経細胞以外にグリア細胞という細胞群が存在し、そのグリア細胞の一種で・・・

続きはソースで

論文情報:【EBioMedicine】Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes
https://www.ebiomedicine.com/article/S2352-3964(18)30201-9/fulltext

大学ジャーナル
http://univ-journal.jp/21301/
ダウンロード


引用元: 【医学】抗うつ薬が効く正確な理由解明、グリア細胞が役割 山梨大学など[06/17]

抗うつ薬が効く正確な理由解明、グリア細胞が役割 山梨大学などの続きを読む
スポンサーリンク

このページのトップヘ