理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

結晶

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/12/16(日) 14:41:57.21 ID:CAP_USER
東北大学と東京大学のグループは、これまでにみつかっていない構造をした固体を発見した。ある方向から見ると原子は結晶のように規則正しく並んでいるが、別の方向から見るとバラバラだった。新しい材料開発につながる成果だという。

固体ではダイヤモンドのように原子が周期的に規則正しく並ぶ「結晶」と、ガラスのようにランダムに並ぶ「アモルファス」、周期的ではないが規則正しく並んだ「準結晶」の3つの状態が知られている。今回観察した固体はどれにも属さず、幾原雄一東北大教授は「第4の固体だ」と唱えている。

続きはソースで

関連link
東北大ら,周期性とランダム性を持つ新原子構造を発見
http://www.optronics-media.com/news/
新構造「第4の固体」発見 東北大と東大、特異な物質
https://r.nikkei.com/article/DGKKZO38943270U8A211C1MY1000

日本経済新聞
https://www.nikkei.com/article/DGXMZO38763280Q8A211C1000000/
ダウンロード (2)


引用元: 東北大・東大、周期性とランダム性を持つ新原子構造の「第4の固体」発見 結晶の境目に新構造[12/11]

東北大・東大、周期性とランダム性を持つ新原子構造の「第4の固体」発見 結晶の境目に新構造の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/11(日) 19:17:21.50 ID:CAP_USER
 九州大学と九州工業大学の研究グループは、立方晶fcc(面心立方格子)構造を有する鉄鋼において、水素含有量が増加するほど立方晶hcp(六方最密構造)相の生成が抑制されることを世界で初めて発見した。

 鉄鋼の強さと機能性は、結晶構造によって変化し、結晶構造は、鉄に添加する元素の種類や量によって変わる。従来、水素はfcc→hcp結晶構造変化を「促進」することが定説となっていた。

 しかし本研究では、水素を含ませた鋼材の挙動調査で、水素がfcc→hcp結晶構造変化を「顕著に抑制」することを発見。水素の含有量を調整した試料を冷却しながらhcp相分率を測定したところ、試料中の水素量が多いほどhcp相分率が増加せず、fcc-hcp変態が抑制されていることがわかったという。これは世界で初めて観測された現象であり、これまでの常識を打ち破るものだ。

続きはソースで

論文情報:【Scientific Reports】An unconventional hydrogen effect that suppresses thermal formation of the hcp phase in fcc steels
https://www.nature.com/articles/s41598-018-34542-0

https://univ-journal.jp/23459/
images


引用元: 鉄鋼中の水素が結晶構造変化を抑制 九州大学と九州工業大学が発見 鋼材の高品質化・高強度化に向けた研究開発に貢献

鉄鋼中の水素が結晶構造変化を抑制 九州大学と九州工業大学が発見 鋼材の高品質化・高強度化に向けた研究開発に貢献の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/11/11(日) 14:50:33.68 ID:CAP_USER
宇宙航空研究開発機構(JAXA)は11日、無人補給船「こうのとり(HTV)」7号機から放出された小型回収カプセルが大気圏に再突入し、小笠原諸島・南鳥島沖で回収に成功したと発表した。日本が独自に国際宇宙ステーション(ISS)から実験試料を回収したのは初めて。将来の有人宇宙船開発にもつながる技術として期待されている。

 JAXAによると、カプセルは、8日にISSから分離したこうのとりから11日午前6時20分ごろ、高度300キロで放出された。姿勢を制御しながら日本列島の上空約100キロで大気圏に再突入し、パラシュートで降下して午前7時5分ごろ着水した。午前10時半ごろ、洋上で待機中の船に回収された。

 カプセルは直径84センチ、高さ約66センチの円錐状で、重さ約180キロ。最高約2千度の高熱にさらされても、内部を4度に長時間保つことができる真空構造のステンレス製容器に、ISSで結晶化させたたんぱく質などの実験試料(約1キロ)が積まれている。

続きはソースで

https://i1.wp.com/blog.40ch.net/wp-content/uploads/2018/11/K10011706541_1811111222_1811111224_01_03.jpg
https://amd.c.yimg.jp/im_siggX1rVytc5QL4_l883KdHpVg---x400-y225-q90-exp3h-pril/amd/20181111-00000017-asahi-000-7-view.jpg

朝日新聞デジタル
https://www.asahi.com/articles/ASLC54J25LC5ULBJ00L.html
no title
※画像はイメージで本文と関係ありません


引用元: 【宇宙開発】小型カプセルが地球に帰還 「こうのとり」から初の回収[11/11]

小型カプセルが地球に帰還 「こうのとり」から初の回収の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/10/12(金) 01:04:02.63 ID:CAP_USER
■安くて薄い、次世代電池の本命

日本で生まれた次世代技術、「ペロブスカイト型太陽電池」の実用化が迫ってきた。安価に製造でき、薄くて曲げられるため、クルマの側面やドーム球場の屋根などにも使える。発電効率は現在主流のシリコン型に追い付きつつあるが、大型化と耐久性が課題だ。

 見た目はまるで「黒いクリアファイル」。薄くて軽く、手でぐにゃりと曲げることもできる。だがよく見ると、電気を通すための金属線が横に走っている。下の写真は東芝と新エネルギー・産業技術総合開発機構(NEDO)が今年6月に発表した新種の太陽電池。材料の結晶構造の名称から「ペロブスカイト型」と呼ばれている。日本発の次世代太陽電池の大本命で、ノーベル賞の有力候補と目されている。

 「低コストで簡単に作れるのに、用途は幅広い。革新的な太陽電池だ」。こう胸を張るのは、2009年に論文を公開し、この分野の第一人者として知られる桐蔭横浜大学の宮坂力・特任教授だ。かつては発電効率などに課題があったが、潜在力に着目した世界中の大学や企業が開発競争を繰り広げたことで、性能が急速に向上。実用化まであと一歩の段階まで迫ってきた。

ペロブスカイト型が「革新的」とされるのには、大きく4つの理由がある。

 1つ目は、「低コスト」で製造できる点だ。ペロブスカイトとは複数の元素によってつくられる結晶構造のこと。太陽電池用には鉛やヨウ素などが使われるのが一般的だ。このペロブスカイトを液体に溶かして、軟らかいフィルムなどの基板に塗布する。十分に乾燥させ、電極などを配置して完成だ。

 現在主流のシリコン型では、製造工程で真空状態をつくったり、約1400度で熱したりする必要がある。一方でペロブスカイト型は、基板に材料を塗るだけなので、大がかりな装置を使わずに済む。ありふれた物質を使うため、調達コストも安い。材料と製造設備を含めてシリコン型の半分以下のコストで製造できると試算されている。

 2つ目は、「薄くて曲げられる」こと。

 シリコン型は硬くて重いため、広くて平坦な土地や、耐荷重性の高い建物の屋上などに設置場所が限られる。

 対照的に、薄くて軽いペロブスカイト型の用途は幅広い。

続きはソースで

https://cdn-business.nikkeibp.co.jp/article/report/20120118/226265/072700016/p1.jpg

https://business.nikkeibp.co.jp/article/report/20120118/226265/072700016/
ダウンロード (1)


引用元: 【材料工学】実用化迫る新技術「ペロブスカイト型太陽電池」[10/11]

実用化迫る新技術「ペロブスカイト型太陽電池」の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/09/27(木) 12:30:19.89 ID:CAP_USER
■地球のタイムカプセル「ジルコン」から探る生命の起源

 40億年前の地球はどんな姿をしていたのだろうか。そのヒントをくれるのが、ジルコン(ZrSiO4)という非常に頑丈な鉱物だ。

 ジルコン結晶は破壊することがほぼ不可能で、古いものは44億年近く前から存在する。小さなタイムカプセルとも言えるこのジルコンの中には、太古の化学的な「指紋」が残されている。「ジルコンは、わたしたちに地球の形成段階を垣間見せてくれる唯一の窓です」と、米ロチェスター大学のダスティン・トレイル氏は言う。

 9月24日付け学術誌『米国科学アカデミー紀要(PNAS)』に発表された論文において、トレイル氏のチームは、40億年前の地球表面が正確にはどのような状態にあったのかを明らかにした。最初の生命が誕生した環境が徐々に解明されようとしている。

■絶えずリサイクルする地球
 地球が形成された45億年以上前、表面の状態は現在とはまるで違っていたと考えられる。科学者たちが一般に考える初期の地球とは、ひっきりなしに隕石が降り注ぎ、火山からは溶岩がゴボゴボと音を立てて流れ出す、地獄のような場所だ。

 しかしこれらはすべて推測であり、地球最初期の数億年間から現在に至るまで残っている物理的な証拠は何もない。地球は究極のリサイクル・システムを持っており、プレートテクトニクス運動により、古い岩盤は絶えず新しいものとして再利用され、溶岩流が固まって新たな景色を形作っている。

 ジルコンの結晶はしかし、非常に硬いため、このリサイクル・プロセスにおいてさらされる非常な高温や高圧力に耐えることができ、その内部には結晶が最初に形成されたときの周囲の環境に関するヒントが残されている。ジルコン酸素同位体を用いたこれまでの研究では、43億年ほど前には、地表の一部を液体の水が覆っていたことがわかっている。これはつまり、地球の表面が、地球形成からわずか数億年後には冷えていたことを示唆している。そして昨年には、41億年前のジルコンから、初期の生命の痕跡とも考えられる炭素に富んだ含有物が見つかった。

 しかし、こうしたわずかな情報以外には、この時期の地球表面で生命を生み出すような化学反応が起きていたかどうかについては、ほとんどわかっていなかった。

■ジルコンに含まれる40億年前のヒント

 その答えを求めてトレイル氏のチームが注目したのが、ケイ素と酸素だ。ケイ素と酸素は、両方合わせると、今日の地球に存在する岩石のほぼ75パーセントを占める。この二つの元素にはまた、調べがいのある特性がある。ともに、同位体を持つことだ。

 岩石ができたり変性したりすると、そこに含まれる同位体の特性が変化する。よってたとえば、溶岩が冷えてできる岩と、風雨にさらされた岩から採取される粘土とでは、含まれる同位体の特性は大きく異なる。そしてジルコンは、地球初期の堆積物の特性を今も有している。

 ジルコンに含まれるケイ素と酸素を精密に分析するため、研究チームは、米カリフォルニア大学にある高解像度イオンマイクロプローブを使用した。電荷を帯びた原子のビームを微小なサンプルに当て、跳ね返ってくるイオンを計測するものだ。

続きはソースで

https://cdn-natgeo.nikkeibp.co.jp/atcl/news/18/092600416/ph_thumb.jpg

ナショナルジオグラフィック日本版サイト
https://natgeo.nikkeibp.co.jp/atcl/news/18/092600416/
ダウンロード (2)


引用元: 【鉱物】40億年前の地球は生命誕生の「温床」だった[09/27]

40億年前の地球は生命誕生の「温床」だったの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2018/08/08(水) 11:39:04.43 ID:CAP_USER
探査機「はやぶさ」が小惑星イトカワから持ち帰った微粒子を分析した結果、イトカワの母体となった天体が、約15億年前に他の天体の衝突により破壊されたとみられることが分かったと、大阪大の寺田健太郎教授(宇宙地球化学)らのチームが7日付の英科学誌電子版に発表した。

 破壊後、再び集積、合体してイトカワとなったと考えられ、「太陽系誕生初期から現在までの歴史解明につながる」としている。

続きはソースで

https://www.sankei.com/photo/images/news/180807/sty1808070013-f1.jpg
https://www.sankei.com/photo/images/news/180807/sty1808070013-f2.jpg

https://www.sankei.com/photo/story/news/180807/sty1808070013-n1.html
ダウンロード (3)


引用元: 【宇宙】15億年前に衝突、破壊か イトカワの母天体、大阪大[08/07]

15億年前に衝突、破壊か イトカワの母天体、大阪大の続きを読む
スポンサーリンク

このページのトップヘ