理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

編集

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/10/17(火) 16:29:17.87 ID:CAP_USER9
北海道大学などの研究グループは、国内で初めて大豆のゲノム編集による性質の改変に成功した。ゲノム編集した大豆の子実から植物体が大きくなる系統を育成。国内で成功例がなかった大豆のゲノム編集だが、成果を基に研究が加速する可能性がある。横浜市立大学、農研機構との共同研究。大豆のゲノム編集は世界でも数例しか成功例がないという。

 ゲノム編集は、他の遺伝子を切る「はさみ」のような遺伝子を組み込み、他の遺伝子を改変する技術。

続きはソースで

https://news.yahoo.co.jp/pickup/6257561
大豆「カリユタカ」(左)とゲノム編集で大きくなった大豆(北海道大学大学院農学研究院提供
http://amd.c.yimg.jp/amd/20171016-00010000-agrinews-000-1-view.jpg
ダウンロード


引用元: 【科学】大豆ゲノム編集 初の成功 大きさ遺伝子を改変 北大など

大豆ゲノム編集 初の成功 大きさ遺伝子を改変 北大などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/10/09(月) 07:28:47.88 ID:CAP_USER9
 「生命の設計図」とも言われる全遺伝情報(ゲノム)を自在に変えられる技術「ゲノム編集」が注目されている。今年のノーベル生理学医学賞における事前予想の最有力候補もゲノム編集。その中でもゲノム編集の利活用を一気に拡大した技術「クリスパー・キャス9」には、日本の研究成果も生かされている。一方、利用が進むにつれ生命倫理をめぐる議論も活発になってきた。ゲノム編集の現状と今後を探った。

 クリスパー・キャス9は、ジェニファー・ダウドナ氏とエマニュエル・シャルパンティエ氏が2012年に発表。既存のゲノム編集手法と比べて、操作したいDNAを狙って操作可能で、簡単かつ高効率に目的の遺伝子を改変できる。同技術の登場で、農作物の品種改良や医学分野などの幅広い研究分野でゲノム編集が使われるようになった。
 
 細胞の核の中にあるDNAは遺伝情報を保存している。DNAを構成する4種類の塩基(A、T、G、C)の並ぶ順番(塩基配列)が遺伝情報となる。ゲノム編集では標的となる塩基配列に人工の酵素が結合し、DNAを切断する。

 DNAの切断部位では修復機能が働くが、同酵素が繰り返し切断を行う中で修復エラーが起きる。このエラーを利用して遺伝子としての機能を失わせたり、切断部に別の塩基配列を挿入して遺伝子を改変したりするのがゲノム編集の特徴だ。

 クリスパー・キャス9技術には日本人の研究成果が生かされている。同技術が利用している特徴的な塩基配列「クリスパー」を発見したのは、九州大学の石野良純教授だ。石野教授は87年、古細菌のDNAに特徴的配列が規則正しく繰り返されていることを示した。

 後にこの配列がクリスパーと命名され、クリスパー間の配列は過去に細菌が感染したウイルスなどの遺伝情報を保存していることが分かった。

 ウイルスなどが再び侵入した際、クリスパー間に保存された配列をもとにキャス9酵素が病原体由来のDNAを切断、攻撃する。ヒトの獲得免疫のような働きだ。細菌が持つ特定の配列を認識して切断する仕組みを応用し、クリスパー・キャス9が開発された。

 農林水産分野の作物育種でゲノム編集技術の応用開発が進んでいる。府省連携の研究支援事業「戦略的イノベーション創造プログラム」(SIP)でも取り組んでいる。

 一般に消費者は遺伝子組み換え作物への不安が強いが、これは本来は対象の作物にない有用遺伝子を導入し、新たな形質を付け加えるためだ。

 しかしゲノム編集なら、紫外線などで起こる突然変異を作物育種に生かすのと流れも似ており、心情的な抵抗は弱い。

~中略~

 作物のゲノム編集で実用化が最も早いのは米・デュポンによる工業用トウモロコシとされ、数年以内に発売の見込みだ。米国が持つ基本特許のライセンスを受けつつ、日本の作物の特許を活用するといった戦略が、将来は重要になりそうだ。

 「ゲノム編集は日常的に使える技術になりつつある。言い換えれば、ゲノム編集を使わないと生命科学の研究では戦えない」。

 16年4月に発足した日本ゲノム編集学会の山本卓会長(広島大学大学院理学研究科教授)は、クリスパー・キャス9の登場で急速に活用が進むゲノム編集の現状をこう説明する。

 だが、生命の設計図が改変可能なゲノム編集は、倫理的な問題も引き起こしている。15年4月、中国の研究チームがクリスパー・キャス9でヒトの受精胚をゲノム編集し、血液疾患の原因遺伝子を改変したことを発表して物議を醸した。

 生殖細胞のDNAをゲノム編集で書き換えると、遺伝情報の変化が子孫代々受け継ぐことになる。また、親が生まれてくる子の容姿や運動能力などを事前に遺伝子操作して決めてしまう、いわゆる「デザイナー・ベビー」の誕生につながる懸念もある。

詳細・続きはソースで

http://newswitch.jp/p/10651
高効率ゲノム編集で筋肉を増強したマダイ(上)と、低効率のマダイ(京大提供)
http://newswitch.jp/img/upload/phpzAF6AZ_59d963b55d62e.jpg
上ゲノム編集で機能性成分ギャバを増やしたトマト(筑波大提供)
http://newswitch.jp/img/upload/phpRPwMa8_59d96355c0859.jpg
日本学術会議の提言
http://newswitch.jp/img/upload/phpyVa3E3_59d96385b914f.jpg
ダウンロード (1)


引用元: 【科学】ノーベル賞候補にも上がったゲノム編集、「クリスパー・キャス9」の魅力と懸念

ノーベル賞候補にも上がったゲノム編集、「クリスパー・キャス9」の魅力と懸念の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/09/30(土) 22:29:26.48 ID:CAP_USER
遺伝子の塩基1個を改変 中国、人の受精卵で実験
2017/9/29 10:00

【ワシントン共同】人の受精卵にゲノム編集の技術を使い、貧血を起こす遺伝性の血液病の遺伝子を改変する実験に成功したと、中国・中山大などのチームが28日までに学術誌に公表した。DNA上にある特定の遺伝子を丸ごと取り換える通常のゲノム編集とは違い、遺伝子を構成する塩基1個だけを換える手法で、チームは世界初の事例だとしている。
 
続きはソースで

▽引用元:共同通信 2017/9/29 10:00
https://this.kiji.is/286301773701399649
ダウンロード (2)


引用元: 【ゲノム編集】人の受精卵で遺伝子の塩基1個を改変する実験に成功 貧血を起こす遺伝性の血液病/中国©2ch.net

【ゲノム編集】人の受精卵で遺伝子の塩基1個を改変する実験に成功 貧血を起こす遺伝性の血液病/中国の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/09/21(木) 07:41:12.83 ID:CAP_USER9
ヒト受精卵
「命の始まり」決める遺伝子解明 英チーム
毎日新聞:2017年9月21日 02時00分
http://mainichi.jp/articles/20170921/k00/00m/040/174000c

 ヒトが受精卵から分化して正常に育つには「OCT4」という遺伝子の働きが欠かせないことをヒトの受精卵の実験で解明したと、英国などの研究チームが20日付の英科学誌ネイチャー電子版に発表した。
一つの細胞である受精卵が分裂を繰り返して胎児になる「生命の始まり」の過程は今も謎に包まれており、全容を解き明かす鍵になると期待される。


 生物の遺伝子を効率良く改変できる「ゲノム編集」技術を使った。
ゲノム編集でヒト受精卵の遺伝子を操作する研究は米国と中国で計4例の報告があるが、
今回の英フランシス・クリック研究所などのチームは昨年、英政府の直轄機関「ヒト受精・胚機構(HFEA)」から公的承認を受けて初めて実施した。

続きはソースで

ダウンロード

引用元: 【科学】ヒト受精卵、「命の始まり」決める遺伝子解明 英チーム©2ch.net

ヒト受精卵、「命の始まり」決める遺伝子解明 英チームの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/08/11(金) 19:15:48.44 ID:CAP_USER
遺伝子操作がこれまでなかったほど進んだブタをつくり出し、人間の臓器移植のドナー不足に対応できる可能性に米研究チームが一歩近づいた。10日付の米科学誌「サイエンス」で論文が発表された。
研究者らは37頭のブタで、DNA配列の一部を改変する「ゲノム編集」によってDNAに組み込まれた危険なウイルスの不活性化に成功した。
内在ウイルスは、将来ブタの臓器をヒトに移植する上で大きな障害の一つだった。
米バイオ企業「イージェネシス」の研究チームは、ブタの臓器がヒトの体で受け入れられるようにするには依然として大きな課題が残っていると認めた。

しかし専門家たちは、今回の研究成果が期待でき、また興奮するような前進だと評価した。
研究はブタの皮膚細胞を使って開始された。まずブタのゲノム情報に組み込まれた25のブタ内在性レトロウイルス(PERV)を特定した。
ヒトとブタの細胞を混在させると、これらのレトロウイルスがヒトに感染することが実験で明らかにされている。
しかし、研究者たちは、ゲノム編集の新技術「Crispr(クリスパー)」を使って25のPERVを除去した。
その上で、クローン技術を使い、改変されたDNAをブタの卵子に入れ、胚をつくり出した。

続きはソースで

ジェイムズ・ギャラガー健康科学担当記者、BBCニュース
(英語記事 GM pigs take step to being organ donors)
http://www.bbc.com/japanese/40896226
images


引用元: 【臓器移植研究】ブタ臓器のヒト移植に一歩近づく 遺伝子操作で内在ウイルス不活性化 [無断転載禁止]©2ch.net

【臓器移植研究】ブタ臓器のヒト移植に一歩近づく 遺伝子操作で内在ウイルス不活性化の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 2017/08/04(金) 23:58:43.94 ID:CAP_USER9
http://www.bbc.com/japanese/features-and-analysis-40810322

米国と韓国の研究チームは2日、重い疾患である肥大型心筋症の遺伝に関わるDNAをヒトの胚から取り除くことに初めて成功したと、英科学誌ネイチャー電子版に発表した。

遺伝情報(ゲノム)のDNA配列の一部を改変する「ゲノム編集」によって1万の遺伝的疾患を予防する可能性が生まれたことになる。
研究チームは5日間にわたって胚を育てることが許された。医療の未来を示唆する今回の研究は、倫理上の深い問題も提起している。

2015年に新たな技術「Crispr(クリスパー)」が生まれて以来、ゲノム編集に関する研究は黄金時代を迎えている。
クリスパーは医療分野で幅広い応用が期待され、嚢胞(のうほう)性線維症から乳がんまで、さまざまな疾患を起こす遺伝子を取り除ける可能性がある。
肥大型心筋症に焦点を当てた今回の研究は、米国のオレゴン健康科学大学とソーク研究所、韓国の基礎科学研究院が共同で行った。

肥大型心筋症は500人に1人が発症する比較的多い病気で、心臓が急に停止する危険がある。一つの遺伝子の異常によって引き起こされ、子供にも受け継がれる可能性は約5割だ。
研究では、肥大型心筋症の男性の精子を、提供された健康な卵子と結合させた後、クリスパー技術で対象の遺伝子を切除した。成功率72%で遺伝子変異のない胚を育てることができた。
研究で重要な役割を果たしたオレゴン健康科学大のシュクラット・ミタリポフ博士は、「異常を起こす遺伝子を血筋から取り除くことになるので、遺伝子修復はすべての世代にわたって引き継がれる」と語った。

「この技術によって、家族の遺伝的疾患の重荷を軽減し、ひいては人類全体に広げることが可能だ」
クリスパー技術の応用はこれまでにも試されてきている。2015年には中国の研究チームが血液疾患に関わる遺伝子異常の修復を試みたが、すべての細胞を修復できなかったため、健康な細胞とそうでないものが「モザイク状」になった。さらに、DNAの別の場所も改変されてしまった。
今回の研究では、中国の研究で示された技術的な課題が克服されている。しかし、これがすぐ一般的な技術になるわけではない。

最も大きな課題は安全性だ。今後、はるかに大規模な研究が必要になる。
また、どういう場合なら遺伝子の修復に値するだけの十分な理由があるのかという疑問にも、答えなくてはならない。着床前の受精卵を遺伝子解析して疾患の可能性を検査する技術は、すでに存在する。
一方で、一つの遺伝子の異常で引き起こされる病気は約1万種類あり、今回の技術を使って修復することが理論的には可能だ。

続きはソースで

(英語記事 Human embryos edited to stop disease)

ジェイムズ・ギャラガー健康科学担当記者、BBCニュース
2017/08/03
ダウンロード (1)


引用元: 【医学】人間の胚を編集 病気の遺伝阻止のため [無断転載禁止]©2ch.net

人間の胚を編集 病気の遺伝阻止のための続きを読む
スポンサーリンク

このページのトップヘ