理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

芳香族

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/10/14(金) 12:22:48.09 ID:CAP_USER
産総研:石炭を天然ガスに変えるメタン生成菌を発見
http://www.aist.go.jp/aist_j/press_release/pr2016/pr20161014/pr20161014.html
http://www.aist.go.jp/Portals/0/resource_images/aist_j/press_release/pr2016/pr20161014/fig.png
http://www.aist.go.jp/Portals/0/resource_images/aist_j/press_release/pr2016/pr20161014/fig1.png


ポイント

•単独で石炭から直接メタンを生成するメタン生成菌を発見
•このメタン生成菌は石炭の構成成分であるメトキシ芳香族化合物をメタンに変換
• 石炭層に内在する「コールベッドメタン」などの天然ガスの成因解明に貢献


概要

 国立研究開発法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)地質調査総合センター 地圏資源環境研究部門【研究部門長 中尾 信典】地圏微生物研究グループ 眞弓 大介 研究員、持丸 華子 主任研究員、吉岡 秀佳 上級主任研究員、坂田 将 研究グループ長、燃料資源地質研究グループ 鈴木 祐一郎 主任研究員、生命工学領域 鎌形 洋一 研究戦略部長(生物プロセス研究部門付き)、生物プロセス研究部門【研究部門長 田村 具博】生物資源情報基盤研究グループ 玉木 秀幸 主任研究員、山本 京祐 元産総研特別研究員らは、石炭中のメトキシ芳香族化合物から直接メタン(CH4)を生成するメタン生成菌を深部地下環境から発見し、石炭層に広く分布するコールベッドメタンの形成にこのメタン生成菌が重要な役割を担っている可能性を明らかにした。

 コールベッドメタンは近年、石炭層中の非在来型天然ガス資源として世界各国で開発が進められている。コールベッドメタンの形成については、石炭層に生息する微生物の活動がその成因の1つと考えられているが、その詳しいメタン生成メカニズムは不明であった。今回、深部地下環境に生息するメタン生成菌がこれまで全く知られていなかったメタン生成経路を介して、多様なメトキシ芳香族化合物からメタンを生成することを発見した。さらに、このメタン生成菌が単独で、メトキシ芳香族化合物を含む石炭から直接メタンを生成できることを実証し、この新たなメタン生成機構をもつメタン生成菌がコールベッドメタンを含む地下の天然ガス資源の形成に地球規模で貢献している可能性を明らかにした。

 この成果の詳細は、米国科学誌「Science」2016年10月14日号に掲載される。同誌は世界最大の総合科学機関である米国科学振興協会(AAAS)により発行されている (http://www.sciencemag.org/およびhttp: //www.aaas.org/)。

続きはソースで

ダウンロード (1)
 

引用元: 【エネルギー/微生物学】石炭を天然ガスに変えるメタン生成菌を発見 コールベッドメタンの成因解明に貢献 [無断転載禁止]©2ch.net

石炭を天然ガスに変えるメタン生成菌を発見 コールベッドメタンの成因解明に貢献の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: 2014/07/09(水) 08:07:19.42 ID:???.net

室温で超電導実現の可能性 長崎総合科学大が理論計算

2014/7/7 23:34
日本経済新聞 電子版

 長崎総合科学大学の加藤貴准教授らは、電気抵抗がゼロになる超電導が室温でも生じる可能性があることを理論計算で求めた。現在は極めて低い温度でしか起こらない。計算では、電気が全く流れない「絶縁体」から不純物や欠陥を完全に取り除けば、電子が最も流れやすい超電導になるという。ダイヤモンドなど数種類の物質で実現の可能性があるとみている。

 超電導材料の開発では従来…

(以降は有料記事)
続きはソースで

ソース:日本経済新聞電子版 (2014/7/7)
室温で超電導実現の可能性 長崎総合科学大が理論計算
http://www.nikkei.com/article/DGXNASGG0401K_X00C14A7TJM000/

原論文:Advanced Materials Research
Takashi Kato.
The Formation of Cooper Pairs and their Role in Nondissipative Diamagnetic Currents in the
Micro- and Macro-Scopic Sized Graphene Materials; Towards High-Temperature Superconductivity.
http://www.scientific.net/AMR.918.36


スレッド作成依頼をいただきました
http://anago.2ch.net/test/read.cgi/scienceplus/1403379058/64
~~引用ここまで~~



引用元: 【材料科学】室温で超伝導の可能性 芳香族やグラファイト粒子の超伝導を説明する理論構築


室温でも超伝導が可能に?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/01/17(金) 02:29:43.94 ID:???

筑波大学は、ベンゼンとシクロブタジエンが反応し、ベンゼン環(C6H6)が形式的にC4H4とC2H2の2つのフラグメントに開裂する反応を世界で初めて発見した。

ベンゼンは代表的な芳香族分子の一つで、炭素原子6個が環状に結合した安定な構造であるため、多くの有機化合物の基本骨格となっている。
ベンゼンの反応は、一般にベンゼン環の水素原子を他の原子や置換基に置き換える置換反応であり、ベンゼン環構造そのものを壊す反応は、穏やかな条件下では進行しない。

ベンゼン環を壊すためには、芳香族性のもとになっている安定化の大きなエネルギーを越えることが必要と考えられる。
一方、シクロブタジエン(C4H4)は、炭素原子4個からなる環状構造をもつ分子だが、非常に不安定で反応性が高いという性質を有している。

この研究では、シクロブタジエンの極めて高い反応性を利用して、ベンゼンの環構造を活性化し、その炭素骨格を壊すことに成功した。
まず、不安定な構造のシクロブタジエンを単離することを試みた。
シクロブタジエンにケイ素置換基と強い電子求引基を導入したところ、ケイ素基の立体電子的効果によって安定化し、単離が可能となった。

シクロブタジエンは、その環構造そのものに非常に高いエネルギーを有しており、反応性に富んでいる。
これを、安定な構造であるベンゼンと反応させると、常圧・120°Cという温和な条件下でDiels-Alder反応が進行し、ベンゼン環がC4H4とC2H2のフラグメントに開裂した化合物が得られた。

これまで、ベンゼン環の開裂には高温高圧の過酷な条件が必要だとされていたが、この研究結果は、定説を覆すものとなった。

4

OPTRONICS 2014/1/9
http://optronics-media.com/news/20140109/16635/

プレスリリース(pdf)
http://www.tsukuba.ac.jp/wp-content/uploads/p201401081900.pdf

論文
Nature Communications
A Diels - Alder super diene breaking benzene into C2H2 and C4H4 units
http://www.nature.com/ncomms/2014/140108/ncomms4018/full/ncomms4018.html



【すごい!】ベンゼン環を開裂させる反応を世界で初めて発見、筑波大の続きを読む
スポンサーリンク

このページのトップヘ