理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

融合

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/12/30(土) 17:35:54.28 ID:CAP_USER
子どもの純粋な疑問として、はたまた知恵のある大人になってから改めて
「太陽を消してしまうためにはどのぐらいの水をかけたらいいんだろう……?」と思ったことがある人もいるはず。
科学的に考えると、とても意味のあるものではないと気付かされるこの問いに対して、
少し真面目に考えてみると実は水で太陽を消してしまえるかもしれない可能性が導き出されています。

How much water would extinguish the Sun?
https://knowridge.com/2017/12/how-much-water-would-extinguish-the-sun/

太陽は地球の109倍もの直径を持ち、太陽系全体の質量の99%以上を占めるという巨大な天体です。
そのため、人間が肌身で感じうるどんな感覚をもってしても、太陽の大きさを実感することは困難を極めます。
太陽の構造は大きく分けると中心から核、放射層、対流層となるのですが、一番外側の対流層だけでも厚さは20万km、すなわち地球16個分もの厚みがあります。

そう聞くだけでもう「水で太陽を消すのは無理だ……」とめげそうになりますが、太陽を消してしまうことの難しさはそれだけではありません。そもそも太陽は「燃えている」わけではないので、はたして水を加えることでその活動を止められるかどうかは極めて懐疑的です。

地球上でものが燃えるのは、有機物などの可燃物が酸素と激しく反応しているためで、その時に光や熱が放出されます。
この反応を止めるためには、「酸素の供給を遮断する」「温度を下げる」という方法が有効であり、水はそのための有効な道具として昔から使われてきました。

一方、太陽が熱と光を生みだすエネルギー源となっているのは、太陽の核で連続的に発生している水素原子の熱核融合です。
太陽の核は2500億気圧・1500万ケルビンという高圧・高温環境にあり、2つの水素原子が衝突することでヘリウム原子へと変化するときに強烈な光と熱のエネルギーを生みだしています。
そのため、消防隊が放水するような感覚で太陽の活動を止めるのは、まったく意味のないものであるというわけです。

ここで仮に、水を水素と酸素に分解したとするとどのような結果を導くでしょうか。
もし、太陽と同じぐらいの質量のある水が供給され、何らかの要因で水の分子が水素と酸素に分解されたとします。
先述のように、太陽の燃料となっているのは水素原子です。そのため、水の供給によって水素が追加されたとすると、太陽はさらに多くの燃料を得ることとなって活動はさらに活発化されてしまい、「太陽を消す」どころではなくなってしまいます。これでは完全に逆効果。

一方の酸素ですが、こちらも太陽に供給するのは逆効果となります。
しかしその理由は「酸素と水素が燃焼するから」というものではありません。
太陽の中では、水素原子どうしが陽子-陽子連鎖反応で核融合を行っていると同時に、CNOサイクルと呼ばれる反応が起こっています。これは炭素(C)と窒素(N)と酸素(O)が関与する連鎖反応で、太陽が生みだすエネルギーの1.6%がこの反応によって生みだされています。

つまり、酸素を供給することによっても、太陽の活動は活発化するというわけです。
さらに、このCNOサイクルは恒星の質量が増えると反応全体に占める割合が増加するという特徴があります。
そのため、酸素が供給されることで太陽の質量が増加するとCNOサイクルが活発化され、太陽の活動は飛躍的に強大化することになると予測することができます。

このような理論から、水で太陽は消せないばかりか、むしろその活動を強めてしまうということが予測されています。

続きはソースで

関連ソース画像
https://i.gzn.jp/img/2017/12/28/how-much-water-extinguish-sun/01.png

GIGAZINE
http://gigazine.net/news/20171228-how-much-water-extinguish-sun/
images


引用元: 【宇宙】太陽に水をかけて消すことは可能なのか?

太陽に水をかけて消すことは可能なのか?の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/11/21(火) 13:24:44.54 ID:CAP_USER
次世代のエネルギー源として研究が進められている核融合の技術をまた一歩前に進める発見がもたらされています。
アメリカのテキサスA&M大学が中心になって行われた研究からは、
核融合発電技術の大きな障害になっていた金属素材が脆(もろ)くなってしまう問題「ヘリウムバブルによる金属脆化」に対する高い耐性を持つ構造が発見されました。

Self-organization of helium precipitates into elongated channels within metal nanolayers | Science Advances
http://advances.sciencemag.org/content/3/11/eaao2710

Channeling helium: Researchers take next step toward fusion energy | 10 | 11 | 2017 | News & Events | College of Engineering
http://engineering.tamu.edu/news/2017/11/10/channeling-helium-researchers-take-next-step-toward-fusion-energy

A Helium-Resistant Material Could Usher in the Age of Nuclear Fusion
https://futurism.com/helium-resistant-material-usher-nuclear-fusion/

核融合発電では、水素やヘリウムなど軽い原子が衝突して融合する際に生じる非常に大きなエネルギーをもとに発電が行われます。
原子核が融合する際に強い放射線が放出されますが、反応が止まると原理的には放射線の放出はゼロになります。
そのため、原子力発電におけるプルトニウムのような一次的な核廃棄物が生じないため、
核融合発電は「夢のエネルギー源」ともいわれています。

そんな核融合発電の妨げになっている要因の一つが、ヘリウムバブルによる金属脆化の問題です。
これは、水素原子の核融合反応の際に生じる副産物であるヘリウムが、金属の表面に近い部分に微細な泡「ヘリウムバブル」を発生させることで金属をまるでスポンジのような状態、さらには毛羽だった繊維のような状態にしてしまうというもので、最終的には金属を非常に脆い状態にしてしまいます。

続きはソースで

https://i.gzn.jp/img/2017/11/20/helium-resistant-material/snap10657_m.png

GIGAZINE
https://gigazine.net/news/20171120-helium-resistant-material/
ダウンロード (1)


引用元: 【エネルギー】核融合発電の最大の障壁「ヘリウムバブルによる金属脆化」を解決する構造が初めて発見される

【エネルギー】核融合発電の最大の障壁「ヘリウムバブルによる金属脆化」を解決する構造が初めて発見されるの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/11/16(木) 02:19:15.43 ID:CAP_USER
 おとめ座の方向に11光年離れた赤色矮星(わいせい)「ロス128」の周りで地球に似た惑星を発見したと、
フランスのグルノーブル・アルプ大などの国際研究チームが15日発表した。
太陽系外では4光年先の「プロキシマb」に次いで地球から2番目に近い惑星だが、太陽系に接近中のため、
7万9000年後には最も近い惑星になるという。

 赤色矮星は宇宙に多数ある小さな恒星で、水素の核融合が穏やかなため暗い。ロス128は質量、大きさとも太陽の2割弱。
発見された惑星「ロス128b」は赤色矮星の周りを1周約10日で回り・・・

続きはソースで

(2017/11/15-20:12)

時事ドットコム
https://www.jiji.com/jc/article?k=2017111501233&g=soc

ダウンロード


引用元: 【宇宙】〈生命存在か〉11光年先、地球に似た惑星=太陽系に接近中・国際研究チーム

〈生命存在か〉11光年先、地球に似た惑星=太陽系に接近中・国際研究チームの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/10/30(月) 19:07:39.63 ID:CAP_USER
九州大学カーボンニュートラル・エネルギー国際研究所(I2CNER)
/大学院工学研究院の小江誠司(おごうせいじ)主幹教授らの研究グループは、田中貴金属工業株式会社との共同研究により、燃料電池と太陽電池を融合する同一触媒の開発に成功しました。
 次世代の電池として、燃料電池と太陽電池はこれまで別々に開発されてきました。
本研究では、「自然界の水素酵素と光合成の機能を融合した新しい触媒」を開発しました。
この触媒を用いると、「水素をエネルギー源として燃料電池が、水と光をエネルギー源として太陽電池が駆動する」ことを見出しました。

本研究成果はエネルギー研究の分野において格段の発展と波及効果をもたらす可能性があります。

続きはソースで

九州大学
http://www.kyushu-u.ac.jp/ja/researches/view/182
ダウンロード


引用元: 【九州大学】燃料電池と太陽電池を融合する同一触媒の開発に成功

【九州大学】燃料電池と太陽電池を融合する同一触媒の開発に成功の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/08/09(水) 20:12:07.37 ID:CAP_USER9
「夢のエネルギー」核融合発電の実現に向け一歩前進です。

岐阜県土岐市の核融合科学研究所は、
核融合反応に必要な条件の1つとされるプラズマの温度1億2000万度を達成しました。

核融合科学研究所が実現を目指す核融合発電は、原子核を衝突させて核融合反応を起こし、エネルギーを取り出そうとするものです。
研究所では、大型ヘリカル装置という装置を使って、原子核と電子がバラバラになって飛び交う「プラズマ状態」を作り出しています。

プラズマは、温度が高いほど性能がよいとされ、1億2000万度に達することが核融合反応を起こすのに必要な条件の1つですが、これまでの水素を使った実験では、9400万度が最高でした。

そこで、ことし3月からは、水素の同位体である重水素を使った実験を開始。
先月、1億2000万度を達成したと言うことです。

続きはソースで

以下ソース:CBC 9日17:49
http://www.hicbc.com/news/detail.asp?id=00044660
ダウンロード


引用元: 【技術】核融合発電に向けプラズマ1億2000万度達成 核融合科学研究所©2ch.net

核融合発電に向けプラズマ1億2000万度達成 核融合科学研究所の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2017/07/13(木) 23:43:19.13 ID:CAP_USER9
中国科学院は5日、核融合実験炉「Experimental Advanced Superconducting Tokamak(EAST)」を使った実験で、101.2秒間に渡ってプラズマを封じ込め、ロングパルスHモードの条件下におけるプラズマ封じ込め時間の世界記録を更新した成功したことを発表した。同院によるとこの間のピーク温度は50,000,000 K(50,000,000C)に達した。

中国科学院は2016年2月にもEASTを使った実験で、102秒間のプラズマ封じ込めに成功したことを発表していた。2016年の実験と今回の実験とでは、実験条件の差異が生じており、同院は、今回の実験の方の重要性を強調している。

中国科学院は今後も実験を続けていくことで、核融合反応達成に必要となるプラズマを封じ込め時間、1000秒達成の達成を目指すとしている。

続きはソースで

http://businessnewsline.com/news/images2/201707100020090000l2.jpg
http://businessnewsline.com/news/images2/2017071000200900002l2.jpg
http://businessnewsline.com/news/201707100020090000.html

Source: Chinese Academy of Sciences
http://english.cas.cn/head/201707/t20170705_179373.shtml
ダウンロード


引用元: 【科学】中国、核融合実験炉でプラズマ封じ込め時間の世界記録更新 最高温度5000万度で101.2秒を達成 ©2ch.net

中国、核融合実験炉でプラズマ封じ込め時間の世界記録更新 最高温度5000万度で101.2秒を達成の続きを読む

このページのトップヘ