理系にゅーす

理系に関する情報を発信! 理系とあるものの文系理系関係なく気になったものを紹介します!

スポンサーリンク

視野

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2019/05/08(水) 14:48:25.36 ID:CAP_USER
【2019年5月7日 東京大学木曽観測所/the Tomo-e Gozen Project】

東京大学大学院理学系研究科附属天文学教育研究センターが運営する木曽観測所には、広視野を特長とする口径105cmシュミット望遠鏡が設置されている。この望遠鏡は満月180個分に相当する直径9度の視野を一度に撮影することができ、この広い視野を活かした様々な観測研究に利用されている。

同観測所では、105cmシュミット望遠鏡の視野全面(焦点面で直径52cm)を84枚の35mmフルHD CMOSイメージセンサーで覆う超広視野高速カメラ「トモエゴゼン(Tomo-e Gozen)」の開発を進めてきた。使われるCMOSイメージセンサーはキヤノンが開発したもので、CCDに比べて高速でデータを読み出すことができ、毎秒2フレームの動画観測も行えるため、超新星などの突発天体の検出・同定観測に威力を発揮すると期待されている。

http://www.astroarts.co.jp/article/assets/2019/05/16697_telescope.jpg
105cmシュミット望遠鏡(提供:東京大学木曽観測所、以下同)

「トモエゴゼン」の開発は2014年度から始まり、カメラの巨大な視野を構成するイメージセンサーユニットを1/4ずつ製作して望遠鏡の焦点面で順次結合する方式をとってきた。今回、最後となる「Q4」ユニットが完成し、ついに全84枚のCMOSセンサーが揃った。

http://www.astroarts.co.jp/article/assets/2019/05/16698_tomoegozen.jpg
105cmシュミット望遠鏡に取り付けられたTomo-e Gozenフルモデル。右下の1/4が最後に搭載された「Q4」ユニット

続きはソースで

http://www.astroarts.co.jp/article/assets/2019/05/16699_firstlight.jpg

アストロアーツ
http://www.astroarts.co.jp/article/hl/a/10609_tomoegozen
ダウンロード


引用元: 【天文学】東大木曽観測所の105cmシュミット望遠鏡用超広視野カメラ「トモエゴゼン」完成センサー84枚のフル構成で初観測

東大木曽観測所の105cmシュミット望遠鏡用超広視野カメラ「トモエゴゼン」完成センサー84枚のフル構成で初観測の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2016/06/21(火) 12:03:55.58 ID:CAP_USER
カメレオンの舌に驚異の粘着力、「長年の謎」を解明 写真1枚 国際ニュース:AFPBB News
http://www.afpbb.com/articles/-/3091155
http://afpbb.ismcdn.jp/mwimgs/6/d/500x400/img_6d88b740ebb3fef7137ade5b6f3450cc263229.jpg


【6月21日 AFP】誰もが舌を巻く敏腕ハンターのカメレオンは、体色を変化させる擬態、全景を見渡せる目、多大な忍耐強さなど、驚くほど多彩な生物学的武器を頼りに獲物を捕らえる──。中でも最も特徴的なのは、あの電光石火の舌だ。

 カメレオンのむちのように動く舌の優れた能力については、長年にわたり広く研究が行われてきた。しかし、ある特定の能力だけはこれまで謎のままだった。それは、どのようにして、獲物をつかんだままの舌を素早く元の口の中に戻すことができるのかということだ。

 これまでに提唱された仕組みには、吸引や粘り気、カメレオンの舌の粗い表面と獲物の体表間の「面ファスナー作用」など、さまざまなものがあった。カメレオンは、自身の体重の3分の1までの重さの獲物を舌で捕らえることができる。

 ベルギーとフランスの研究チームが20日に発表した研究結果によると、謎の答えは、舌先にある粘着性の粘液だという。

 英科学誌「ネイチャー・フィジックス(Nature Physics)」に掲載された研究論文の共同執筆者で、ベルギー・モンス大学(University of Mons)のパスカル・ダンマン(Pascal Damman)氏は「この粘液は粘度が非常に高く(人間の)唾液のほぼ1000倍に達することが分かり驚いた」と話す。 

 研究チームは今回、このように高い粘度を実現すると考えられる接着性(粘性)を算出するために数学を用いた。

続きはソースで

images (1)

(c)AFP/Laurence COUSTAL

引用元: 【動物学】カメレオンの舌に驚異の粘着力、「長年の謎」を解明 [無断転載禁止]©2ch.net

カメレオンの舌に驚異の粘着力、「長年の謎」を解明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 2015/12/01(火) 06:02:40.86 ID:h9smNHyH*.net
2015年12月01日 06時00分00秒

By Martin Abegglen

「タランチュラ」というのはヨーロッパの伝説に登場する毒蜘蛛を指す言葉です。そんな物騒な名前を冠したクモが世界には多数存在し、カラフルかつ毛むくじゃらな見た目や、想像以上に大きなサイズ感などから「苦手、というか絶対触れない!」という人も多いかと思います。
しかし、そんなタランチュラが「広視野角のディスプレイ開発」に大きな影響を与えるかもしれない、とする新しい研究結果が公開されてました。

Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity | Science Advances
http://advances.sciencemag.org/content/1/10/e1500709

Blue tarantulas may help humans make better wide-angle computer displays | The Verge
http://www.theverge.com/2015/11/27/9786868/tarantula-blue-iridescent-nanostructures-computer-displays-biomimicry

アクロン大学の研究チームが「タランチュラの青色は鮮やかな彩色にも関わらず、少なくとも人間の目には、虹色ではなく青色に見える」という研究結果を公表しました。
これは「タランチュラの青色」が明暗などで見え方を変えないことを示しており、自然界においていつどの角度から見てもきれいな青色に見える、ということを指します。

この「タランチュラの青色」についてより詳細に調査すべく、アクロン大学の研究チームは顕微鏡検査技術を用いてタランチュラの体毛を分析したそうです。
この分析により、タランチュラという種は「タランチュラの青色」を生み出すために特定の色素などは使用していないことが明らかになっています。

http://i.gzn.jp/img/2015/12/01/blue-tarantula-display/3202519694_e31cf671d9_z.jpg
By John

それでは「タランチュラの青色」がどうやって生まれているのかというと、クモの体毛にあるナノ構造が青色の光を反射することで鮮やかな色味が表現されている、とのこと。
なぜこの「タランチュラの青色」が特別なのかというと、光の反射だけで「いつどこから見ても鮮やかな青色」を表現するからです。通常の場合、光を反射すると虹色に見えたりするところを「常に青色に見える」というのが非常に特殊だそうです。
なお、タランチュラの体毛のナノ構造は、タランチュラの種類ごとに異なることも明らかになっています。

http://i.gzn.jp/img/2015/12/01/blue-tarantula-display/001_m.jpg

今回の発見で最も重要なのは、「タランチュラの青色」が明暗や角度などで見え方を変化させない、という点です。
「タランチュラはTVや電話、その他デバイスのような色を生み出す技術をより見やすくするための重要なモデルになる可能性がある」とアクロン大学のTodd Blackledge氏は語っています。
具体的には、「より省エネな広視野角ディスプレイ」を開発するヒントになるかもしれないとのこと。

『タラン(続きや関連情報はリンク先でご覧ください)

0



引用元:gigazine http://gigazine.net/news/20151201-blue-tarantula-display/

引用元: 【科学】 タランチュラのナノ構造が生み出す「青色」が広視野角ディスプレイの未来を担う? (gigazine)

タランチュラのナノ構造が生み出す「青色」が広視野角ディスプレイの未来を担う?の続きを読む
スポンサーリンク

このページのトップヘ